Currently, the family contains four genera with all members identified from birds, fishes, and insects only. The present study reports a novel birnavirus unexpectedly identified from classical swine fever virus-infected pigs by viral metagenomic analysis, which is, therefore, named as porcine birnavirus (PBRV). Follow-up reverse transcription-polymerase chain reaction (RT-PCR) screening of archived tissues of diseased pigs identified 16 PBRV strains from nine provinces/autonomous regions in China spanning 21 years (1998-2019), and the viral loads of PBRV in clinical samples were 10-10 genome copies per 0.1 g tissue, showing the replication of PBRVs in the pigs. Genome-based sequence comparison showed that PBRVs are genetically distant from existing members within the family with 45.8-61.6 per cent and 46.2-63.2 per cent nucleotide sequence similarities in segments A and B, respectively, and the relatively closed viruses are avibirnavirus strains. In addition, indels of 57, 5, and 18 amino acid residues occurred in 16, 2, and 7 locations of the PBRV polyprotein and VP5 and VP1 proteins, respectively, as compared to the reference avibirnaviruses. Phylogenetic analysis showed that PBRVs formed an independent genotype separated from four other genera, which could be classified into two or three subgenotypes (PBRV-A1-2 and PBRV-B1-3) based on the nucleotide sequences of full preVP2 and VP1 genes, respectively. All results showed that PBRV represents a novel porcine virus species, which constitutes the first mammalian birnavirus taxon, thereby naming as genus is proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516818 | PMC |
http://dx.doi.org/10.1093/ve/veab084 | DOI Listing |
Curr Issues Mol Biol
November 2024
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China.
Porcine circovirus type 2 (PCV2) is an important swine pathogen that has caused considerable economic losses in the global swine industry. During our surveillance of pigs in Shandong, China, from 2018 to 2020, we found that the PCV2 infection rate was 7.89% (86/1090).
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Guangxi University, Nanning, China.
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV.
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria.
Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.
View Article and Find Full Text PDFArch Virol
December 2024
Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba.
Classical swine fever (CSF) is endemic in Cuba and is one of the major health problems of the Cuban swine industry. The current efforts to control the disease in Cuba include vaccination with Porvac, a subunit marker vaccine. Although the efficacy of Porvac against CSF virus (CSFV) subgenotype 1.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affair, Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
In the context of modern pig farming, the central role of boars is underscored by large-scale centralized breeding and the widespread application of artificial insemination techniques. However, previous studies and breeding programs have focused mainly on product efficiency traits, such as growth rate, lean meat yield, and litter size, often neglecting boar semen traits. In this study, we estimated the genetic parameters and assessed the genomic prediction accuracy of boar semen traits with phenotypes evaluated from 274,332 ejections in a large population consisting of 2467 Duroc boars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!