For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery, the detailed analysis of the epilepsy localization area is an essential and logical step. The Electroencephalogram (EEG) signals from these areas are distinct and are referred to as focal, while the EEG signals from other normal areas are known as nonfocal. The visual inspection of multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a novel method based on differential operator and Tunable Q-factor wavelet transform (TQWT) to distinguish the focal and nonfocal signals. For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were derived from the TQWT subbands. Third, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers. We observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection. The proposed framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418932PMC
http://dx.doi.org/10.1155/2021/6283900DOI Listing

Publication Analysis

Top Keywords

eeg signals
12
focal eeg
12
eeg signal
12
feature selection
8
neural network
8
focal nonfocal
8
eeg
7
focal
5
exploiting feature
4
selection neural
4

Similar Publications

Cancer is a condition in which cells in the body grow uncontrollably, often forming tumours and potentially spreading to various areas of the body. Cancer is a hazardous medical case in medical history analysis. Every year, many people die of cancer at an early stage.

View Article and Find Full Text PDF

Multimodal consumer choice prediction using EEG signals and eye tracking.

Front Comput Neurosci

January 2025

Interdisciplinary Research Center for Finance and Digital Economy, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Marketing plays a vital role in the success of a business, driving customer engagement, brand recognition, and revenue growth. Neuromarketing adds depth to this by employing insights into consumer behavior through brain activity and emotional responses to create more effective marketing strategies. Electroencephalogram (EEG) has typically been utilized by researchers for neuromarketing, whereas Eye Tracking (ET) has remained unexplored.

View Article and Find Full Text PDF

Accurate monitoring of drowsy driving through electroencephalography (EEG) can effectively reduce traffic accidents. Developing a calibration-free drowsiness detection system with single-channel EEG alone is very challenging due to the non-stationarity of EEG signals, the heterogeneity among different individuals, and the relatively parsimonious compared to multi-channel EEG. Although deep learning-based approaches can effectively decode EEG signals, most deep learning models lack interpretability due to their black-box nature.

View Article and Find Full Text PDF

Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences.

View Article and Find Full Text PDF

Background: Lack of motivation and behavioral abnormalities are the hallmarks of postpartum depression (PPD). Severe uterine contractions during labor are pain triggers for psychiatric disorders, including PPD in women during the puerperium. Creating biomarkers to monitor PPD may help in its early detection and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!