Prolyl 4-hydroxylase subunit alpha 1 (P4HA1) is the core active catalytic portion of prolyl 4-hydroxylase, and has contributed to tumorigenesis in several cancers. In this study, we identified that P4HA1 mRNA and protein are both up-regulated in non-small cell lung cancer (NSCLC). Besides, overexpressed P4HA1 is correlated with poor clinical outcomes and serve as an independent prognosis biomarker in lung adenocarcinoma (LUAD), but not lung squamous cell carcinoma (LUSC). studies, decreased P4HA1 significantly inhibits proliferation and cell cycle, by regulating cyclin-dependent kinases (CDKs), cyclins and CDK inhibitor (CKI). Moreover, via inhibiting epithelial-mesenchymal transition (EMT) and matrix metalloprotease (MMPs), dysregulation of P4HA1 could restrain the tumor cell invasion and metastasis of lung adenocarcinoma. In addition, we found that P4HA1 could enhance cell stemness and cisplatin-resistance in lung adenocarcinoma. In summary, P4HA1 plays a crucial role in the development of NSCLC and may provide a brand-new target for lung cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517996PMC
http://dx.doi.org/10.7150/jca.63147DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
16
metastasis lung
8
prolyl 4-hydroxylase
8
lung cancer
8
lung
7
p4ha1
7
cell
6
overexpression p4ha1
4
p4ha1 associates
4
associates poor
4

Similar Publications

Cost Effectiveness of Exclusionary EGFR Testing for Taiwanese Patients Newly Diagnosed with Advanced Lung Adenocarcinoma.

Pharmacoeconomics

January 2025

Division of Pulmonology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Road, Tainan, 704, Taiwan.

Background And Objective: Approximately half of lung adenocarcinomas in East Asia harbor epidermal growth factor receptor (EGFR) mutations. EGFR testing followed by tissue-based next-generation sequencing (NGS), upfront tissue-based NGS, and complementary NGS approaches have emerged on the front line to guide personalized therapy. We study the cost effectiveness of exclusionary EGFR testing for Taiwanese patients newly diagnosed with advanced lung adenocarcinoma.

View Article and Find Full Text PDF

FAM107A Inhibits the Growth, Invasion and Aerobic Glycolysis of LUAD Cells by Regulating CRYAB/PI3K/AKT.

Biochem Genet

January 2025

Department of Cardiac Function, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.

Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) mutations like the common L858R and exon 19 deletions are well studied, but rarer mutations like exon 19 insertions have received less attention. This case report describes a patient with this uncommon EGFR exon 19 insertion mutation in metastatic lung adenocarcinoma. A 51-year-old male nonsmoker with metastatic lung adenocarcinoma and a rare EGFR exon 19 insertion mutation experienced disease progression on initial carboplatin-pemetrexed chemotherapy.

View Article and Find Full Text PDF

Background: Leptomeningeal metastasis of gastric adenocarcinoma (LM-GC) is a rare and severe complication with a poor prognosis, its prognosis is significantly poorer than liver, lung, and peritoneal metastases. Studies on LM-GC have been limited to clinical case reports. Despite advances in systemic therapies, there is a lack of standardized treatment protocols for LM-GC due to its rarity and the challenges it presents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!