Acute otitis media (AOM) is a common infectious disease in children that is accompanied by signs and symptoms of middle ear inflammation and infection. Previous studies have shown that the long non-coding (lnc)RNA nuclear-enriched abundant transcript 1(NEAT1) participates in various inflammatory conditions and plays an important regulatory role. The focus of the present study was the biological function of NEAT1 and underlying molecular mechanism in lipopolysaccharide (LPS)-induced human middle ear epithelial cells (HMEECs). The expression of NEAT1, miR-301b-3p and toll-like receptor 4 (TLR4) protein were determined by reverse transcription-quantitative PCR and western blot assays, respectively. Dual-luciferase reporter assay was performed to investigate the combination of miR-301b-3p and NEAT1 or . In addition, cell viability, apoptosis and the levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were measured by Cell Counting Kit-8 assay, flow cytometry and ELISA, respectively. Cell viability was significantly decreased, whereas apoptosis and inflammation were increased in LPS-stimulated HMEECs. Functional analyses demonstrated that NEAT1 was upregulated following LPS treatment, whereas knockdown of NEAT1 significantly increased cell viability and alleviated apoptosis and inflammation. Mechanistically, NEAT1 directly bound to and negatively regulated miR-301b-3p expression, whereas miR-301b-3p inhibitors abolished the inhibitory effect of NEAT1 knockdown on cell apoptosis and inflammation. As a target of miR-301b-3p, TLR4 was regulated by NEAT1 and miR-301b-3p. TLR4 overexpression alleviated NEAT1 silencing-induced inflammatory suppression. Rescue experiments demonstrated that NEAT1 promoted TLR4 expression by inhibiting miR-301b-3p. Collectively, the results of the present study suggested that NEAT1 may attenuate LPS-induced inflammation and apoptosis in HMEECs by modulating the miR-301b-3p/TLR4 axis, and may provide a new therapeutic target for the clinical treatment of AOM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515508 | PMC |
http://dx.doi.org/10.3892/etm.2021.10795 | DOI Listing |
Nat Metab
January 2025
Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China.
Objective: Eugenol (EU) from cloves is highly effective against different tumors. The long noncoding ribonucleic acids (lncRNAs), which play a role of competing endogenous RNAs (ceRNAs), suppress microRNAs (miRNAs) involved in post-transcriptional regulatory networks. The present work focused on analyzing how EU affected pre-cancerous breast lesions (PBL).
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Urology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.
View Article and Find Full Text PDFDiscov Oncol
January 2025
The School Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
The prognosis and treatment efficacy of lung adenocarcinoma (LUAD), a disease with a high incidence, remains unsatisfactory. Identifying new biomarkers and therapeutic targets for LUAD is essential. Chromosomal assembly factor 1B (CHAF1B), a p60 component of the CAF-1 complex, is closely linked to tumor incidence and cell proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!