AI Article Synopsis

  • Acute otitis media (AOM) is a common ear infection in kids, causing pain and inflammation in the middle ear.
  • The study looked at a special molecule called NEAT1, which seems to play a role in how ear cells react to infection and inflammation.
  • When NEAT1 was decreased in ear cells, the cells were healthier, showed less inflammation, and suggested that NEAT1 creates more inflammation by affecting another molecule called miR-301b-3p.

Article Abstract

Acute otitis media (AOM) is a common infectious disease in children that is accompanied by signs and symptoms of middle ear inflammation and infection. Previous studies have shown that the long non-coding (lnc)RNA nuclear-enriched abundant transcript 1(NEAT1) participates in various inflammatory conditions and plays an important regulatory role. The focus of the present study was the biological function of NEAT1 and underlying molecular mechanism in lipopolysaccharide (LPS)-induced human middle ear epithelial cells (HMEECs). The expression of NEAT1, miR-301b-3p and toll-like receptor 4 (TLR4) protein were determined by reverse transcription-quantitative PCR and western blot assays, respectively. Dual-luciferase reporter assay was performed to investigate the combination of miR-301b-3p and NEAT1 or . In addition, cell viability, apoptosis and the levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were measured by Cell Counting Kit-8 assay, flow cytometry and ELISA, respectively. Cell viability was significantly decreased, whereas apoptosis and inflammation were increased in LPS-stimulated HMEECs. Functional analyses demonstrated that NEAT1 was upregulated following LPS treatment, whereas knockdown of NEAT1 significantly increased cell viability and alleviated apoptosis and inflammation. Mechanistically, NEAT1 directly bound to and negatively regulated miR-301b-3p expression, whereas miR-301b-3p inhibitors abolished the inhibitory effect of NEAT1 knockdown on cell apoptosis and inflammation. As a target of miR-301b-3p, TLR4 was regulated by NEAT1 and miR-301b-3p. TLR4 overexpression alleviated NEAT1 silencing-induced inflammatory suppression. Rescue experiments demonstrated that NEAT1 promoted TLR4 expression by inhibiting miR-301b-3p. Collectively, the results of the present study suggested that NEAT1 may attenuate LPS-induced inflammation and apoptosis in HMEECs by modulating the miR-301b-3p/TLR4 axis, and may provide a new therapeutic target for the clinical treatment of AOM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515508PMC
http://dx.doi.org/10.3892/etm.2021.10795DOI Listing

Publication Analysis

Top Keywords

neat1
12
middle ear
12
cell viability
12
apoptosis inflammation
12
long non-coding
8
inflammation apoptosis
8
human middle
8
ear epithelial
8
epithelial cells
8
mir-301b-3p/tlr4 axis
8

Similar Publications

Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention.

Nat Metab

January 2025

Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1.

View Article and Find Full Text PDF

Eugenol inhibits NEAT1 as a ceRNA in pre-cancerous breast lesions.

Heliyon

January 2025

Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China.

Objective: Eugenol (EU) from cloves is highly effective against different tumors. The long noncoding ribonucleic acids (lncRNAs), which play a role of competing endogenous RNAs (ceRNAs), suppress microRNAs (miRNAs) involved in post-transcriptional regulatory networks. The present work focused on analyzing how EU affected pre-cancerous breast lesions (PBL).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD.

View Article and Find Full Text PDF

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

The prognosis and treatment efficacy of lung adenocarcinoma (LUAD), a disease with a high incidence, remains unsatisfactory. Identifying new biomarkers and therapeutic targets for LUAD is essential. Chromosomal assembly factor 1B (CHAF1B), a p60 component of the CAF-1 complex, is closely linked to tumor incidence and cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!