A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry. | LitMetric

Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry.

Front Plant Sci

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China.

Published: September 2021

Blueberries () contain large amounts of flavonoids, which play important roles in the plant's ability to resist stress and can also have beneficial effects on human health when the fruits are eaten. However, the molecular mechanisms that regulate flavonoid synthesis in blueberries are still unclear. In this study, we combined two different transcriptome sequencing platforms, single-molecule real-time (SMRT) and Illumina sequencing, to elucidate the flavonoid synthetic pathways in blueberries. We analyzed transcript quantity, length, and the number of annotated genes. We mined genes associated with flavonoid synthesis (such as anthocyanins, flavonols, and proanthocyanidins) and employed fluorescence quantitative PCR to analyze the expression of these genes and their correlation with flavonoid synthesis. We discovered one R2R3 MYB transcription factor from the sequencing library, , that can positively regulate anthocyanin synthesis in blueberries. is mainly expressed in colored (mature) fruits. Experiments showed that overexpression and transient expression of promoted anthocyanin synthesis in , tobacco () plants and green blueberry fruits. Yeast one-hybrid (Y1H) assay, electrophoretic mobility shift assay, and transient expression experiments showed that VcMYB1 binds to the MYB binding site on the promoter of the structural gene for anthocyanin synthesis, VcMYB1 to positively regulate the transcription of , thereby promoting anthocyanin synthesis. We also performed an in-depth investigation of transcriptional regulation of anthocyanin synthesis. This study provides background information and data for studying the synthetic pathways of flavonoids and other secondary metabolites in blueberries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514788PMC
http://dx.doi.org/10.3389/fpls.2021.754325DOI Listing

Publication Analysis

Top Keywords

anthocyanin synthesis
20
flavonoid synthesis
16
synthesis
9
single-molecule real-time
8
illumina sequencing
8
transcriptional regulation
8
synthesis blueberries
8
synthetic pathways
8
positively regulate
8
transient expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!