The paper intends to serve two objectives. First, it revisits the celebrated Fay-Herriot model, but with homoscedastic known error variance. The motivation comes from an analysis of count data, in the present case, COVID-19 fatality for all counties in Florida. The Poisson model seems appropriate here, as is typical for rare events. An empirical Bayes (EB) approach is taken for estimation. However, unlike the conventional conjugate gamma or the log-normal prior for the Poisson mean, here we make a square root transformation of the original Poisson data, along with square root transformation of the corresponding mean. Proper back transformation is used to infer about the original Poisson means. The square root transformation makes the normal approximation of the transformed data more justifiable with added homoscedasticity. We obtain exact analytical formulas for the bias and mean squared error of the proposed EB estimators. In addition to illustrating our method with the COVID-19 example, we also evaluate performance of our procedure with simulated data as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503421 | PMC |
http://dx.doi.org/10.1007/s13571-021-00269-8 | DOI Listing |
Magn Reson Med
January 2025
Department of Radiology, University of Missouri, Columbia, Missouri, USA.
Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.
Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.
Diabetol Metab Syndr
January 2025
Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
Background: As cardiovascular disease (CVD) morbidity and mortality increase yearly, this study aimed to explore the potential of the weight-adjusted-waist index (WWI) and its relation to long-term mortality in patients with CVD.
Methods: The diagnosis of CVD was based on standardized medical condition questionnaires that incorporated participants' self-reported physician diagnoses. WWI (cm/√kg) is a continuous variable and calculated as waist circumference (WC, cm) divided by square root of body weight (kg).
Sci Rep
January 2025
Research and Development, Aesculap AG, Tuttlingen, Germany.
In clinical movement biomechanics, kinematic measurements are collected to characterise the motion of articulating joints and investigate how different factors influence movement patterns. Representative time-series signals are calculated to encapsulate (complex and multidimensional) kinematic datasets succinctly. Exacerbated by numerous difficulties to consistently define joint coordinate frames, the influence of local frame orientation and position on the characteristics of the resultant kinematic signals has been previously proven to be a major limitation.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Biomedical Engineering Programme, The University of Hong Kong, Hong Kong. Electronic address:
Objective: Near-field (NF) clutter filters are critical for unveiling true myocardial structure and dynamics. Randomized singular value decomposition (rSVD) stands out for its proven computational efficiency and robustness. This study investigates the effect of rSVD-based NF clutter filtering on myocardial motion estimation.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!