Space-time wave packets are electromagnetic waves with strong correlations between their spatial and temporal degrees of freedom. These wave packets have gained much attention for fundamental properties like propagation invariance and user-designed group velocities, and for potential applications like optical microscopy, micromanipulation, and laser micromachining. Here, free-electron radiation is presented as a natural and versatile source of space-time wave packets that are ultra-broadband and highly tunable in frequency. For instance, ab initio theory and numerical simulations show that the intensity profile of space-time wave packets from Smith-Purcell radiation can be directly tailored through the grating properties, as well as the velocity and shape of the electron bunches. The result of this work indicates a viable way of generating space-time wave packets at exotic frequencies such as the terahertz and X-ray regimes, potentially paving the way toward new methods of shaping electromagnetic wave packets through free-electron radiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596120 | PMC |
http://dx.doi.org/10.1002/advs.202100925 | DOI Listing |
Sci Adv
January 2025
Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Milano, Italy.
Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
In a previous publication [S. E. Schrader et al.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China.
Phys Rev Lett
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
Phys Rev Lett
December 2024
MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Laboratory.
A (target) quantum system is often measured through observations performed on a second (meter) system to which the target is coupled. In the presence of global conservation laws holding on the joint meter-target system, the Wigner-Araki-Yanase theorem and its generalizations predict a lower bound on the measurement's error (Ozawa's bound). While practically negligible for macroscopic meters, it becomes relevant for microscopic ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!