A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expedient Access to Cyanated N-Heterocycles by Direct Flow-Electrochemical C(sp )-H Activation. | LitMetric

Nitriles are recurring motifs in bioactive molecules and versatile functional groups in synthetic chemistry. Despite recent progress, direct introduction of a nitrile moiety in heteroarenes remains challenging. Recent developments in electrochemical reactions pave the way to more practical cyanation protocols. However, currently available methods typically require hazardous cyanide sources, expensive mediators, and often suffer from narrow substrate scope and laborious reaction set-up. To address the limitations of current synthetic methods, herein, an effective, sustainable, and scalable procedure for the direct C(sp )-H cyanation of aromatic N-heterocycles with a user-friendly flow-electrochemical set-up is reported. Furthermore, high substrate and functional-group tolerance is demonstrated, allowing late-stage functionalization of drug-like scaffolds, such as natural products and pharmaceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202103384DOI Listing

Publication Analysis

Top Keywords

expedient access
4
access cyanated
4
cyanated n-heterocycles
4
n-heterocycles direct
4
direct flow-electrochemical
4
flow-electrochemical csp
4
csp activation
4
activation nitriles
4
nitriles recurring
4
recurring motifs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!