A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acceleration of Fracture Healing in Mouse Tibiae Using Intramedullary Nails Composed of β-Type TiNbSn Alloy with Low Young's Modulus. | LitMetric

The optimal Young's modulus of material of orthopedic devices for fracture treatment is still unknown. The purpose of present study was to evaluate the impacts of intramedullary nails composed of a titanium alloy with low Young's modulus, on accelerating fracture healing compared with stainless steel with high Young's modulus. A β-type TiNbSn alloy with a low Young's modulus close to that of human cortical bone was developed for clinical application. TiNbSn alloy with a Young's modulus of 45 GPa and stainless steel with a Young's modulus of 205 GPa were compared, with respect to the impacts on fracture healing. Fracture and fixation using intramedullary nail were performed on the right tibiae of C57BL/6 mice. The assessment of bone healing was performed via micro-computed tomography, histomorphometry, and quantitative reverse transcription polymerase chain reaction. In micro-computed tomography, larger bone volumes were observed in the fracture callus treated with TiNbSn alloy in comparison with those treated with stainless steel. Histological assessments confirmed accelerated cartilage absorption and new bone formation in the TiNbSn alloy group compared with the stainless steel group. The expression of Col1a1, Runx2, Dkk1, and Acp5 was higher in the TiNbSn alloy group, while that of Col2a1 and Col10a1 was lower in the late phase. The present study demonstrated that the fixation by intramedullary nails with TiNbSn alloy offered an accelerated fracture healing with promotion of bone formation via increased Runx2 expression. TiNbSn alloy might be a promising material for fracture treatment devices.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.255.135DOI Listing

Publication Analysis

Top Keywords

tinbsn alloy
32
young's modulus
28
fracture healing
16
stainless steel
16
intramedullary nails
12
alloy low
12
low young's
12
alloy
9
nails composed
8
tinbsn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!