The concept of personalized medicine has been steadily growing for the past decades. Monoclonal antibodies (mAbs) are undoubtedly playing an important role in the transition away from conventional medical practice to a more tailored approach to deliver the best therapy with the highest safety margin to a specific patient. In certain instances, mAbs and antibody drug conjugates (ADCs) may represent the preferred therapeutic option for several types of cancers due to their high specificity and affinity to the antigen. Monoclonal antibodies can be labeled with specific radionuclides well-suited for PET (Positron Emission Tomography) or gamma camera scintigraphy. The use of radiolabeled mAbs allows the interrogation of specific biomarkers and assessment of tumor heterogeneity in vivo by a single diagnostic imaging scan that includes the whole-body in the field-of-view. Moreover, the same mAb can then be radiolabeled with an analogous radionuclide for the delivery of beta-minus radiation or alpha-particles as part of a radioimmunotherapy (RIT) approach. However, the path to develop, validate, and implement mAb-based radiopharmaceuticals from bench-to-bedside is complex due to the extensive pre-clinical experiments and toxicological studies required, and the necessity of labor-intensive clinical trials that often require multi-time-point imaging and blood draws for internal radiation dosimetry and pharmacokinetics. As more mAb-based radiopharmaceuticals have been developed and evaluated, the opportunities and limitations offered by mAbs have become better defined. Our aim with this manuscript is therefore to provide an overview of the recent advances in the development of mAb-based radiopharmaceuticals and their clinical applications in Oncology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.currproblcancer.2021.100796DOI Listing

Publication Analysis

Top Keywords

mab-based radiopharmaceuticals
12
monoclonal antibodies
8
monoclonal antibody
4
antibody based
4
radiopharmaceuticals
4
based radiopharmaceuticals
4
radiopharmaceuticals imaging
4
imaging therapy
4
therapy concept
4
concept personalized
4

Similar Publications

There have been predictions that the use of the macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) in zirconium-89 (Zr) immuno-positron emission tomography (Zr-immunoPET) could enhance the in vivo stability of Zr radioimmunoconjugates. However, conjugating [Zr]Zr-DOTA to a monoclonal antibody (mAb) remains a challenge as the heat treatment required for [Zr]Zr-DOTA chelation can lead to thermal denaturation of the mAb moieties. We developed a method for synthesizing [Zr]Zr-DOTA-mAb based on a tetrazine (Tz)-conjugated bifunctional DOTA derivative 2,2',2″-(10-(1-(4-(1,2,4,5-tetrazin-3-yl)phenyl)-3,21,26-trioxo-6,9,12,15,18-pentaoxa-29-carboxy-2,22,25-triazanonacosane-29-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTAGA-Tz) and the inverse electron-demand Diels-Alder (IEDDA) click chemistry reaction where -cyclooctene-modified mAbs are conjugated to [Zr]Zr-DOTAGA without being exposed to heat.

View Article and Find Full Text PDF

Monoclonal antibody (mAb) production using non-human cells can introduce non-human glycan epitopes including terminal galactosyl-α1-3-galactose (α1-3-Gal) moieties. Cetuximab is a commercial mAb associated with causing anaphylaxis in some patients due to the binding of endogenous anti-α1-3-Gal IgE to the Fab (containing bi-α1-3-galactosylated glycans) but not to the Fc region (containing mono-α1-3-galactosylated glycans). Despite being low in abundance in typical commercial mAbs, the inherent sensitivity of cell culture conditions on glycosylation profiles, and the development of novel glycoengineering strategies, novel antibody-based modalities, and biosimilars by various manufacturers with varying procedures, necessitates a better understanding of the structural requirements for anti-α1-3-Gal IgE binding to the Fc region.

View Article and Find Full Text PDF

Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer.

Semin Nucl Med

September 2023

Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD. Electronic address:

Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment.

View Article and Find Full Text PDF

The concept of personalized medicine has been steadily growing for the past decades. Monoclonal antibodies (mAbs) are undoubtedly playing an important role in the transition away from conventional medical practice to a more tailored approach to deliver the best therapy with the highest safety margin to a specific patient. In certain instances, mAbs and antibody drug conjugates (ADCs) may represent the preferred therapeutic option for several types of cancers due to their high specificity and affinity to the antigen.

View Article and Find Full Text PDF

CA19.9 is one of the most commonly occurring and highest density antigens in >90% of pancreatic cancers, making it an excellent target for monoclonal antibody (mAb)-based imaging and therapy applications. Preloading of unlabeled antibodies to enhance targeting of a radiolabeled mAb has been previously described both for imaging and radioimmunotherapy studies for other targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!