The growth control of a molybdenum disulfide (MoS) thin film, including the number of layers, growth rate, and electrical property modulation, remains a challenge. In this study, we synthesized MoS thin films using the metal-organic chemical vapor deposition (MOCVD) method with a 2 inch wafer scale and achieved high thickness uniformity according to the positions on the substrate. In addition, we successfully controlled the number of MoS layers to range from one to five, with a growth rate of 10 min per layer. The layer-dependent optical and electrical properties were characterized by photoluminescence, Raman spectroscopy, differential reflectance spectroscopy, and field effect transistors. To guide the growth of MoS, we summarized the relation between the growth aspects and the precursor control in the form of a growth map. Reference to this growth map enabled control of the growth rate, domain density, and domain size according to the application purposes. Finally, we confirmed the electrical performance of MOCVD-grown MoS with five layers under a high-κ dielectric environment, which exhibited an on/off current ratio of 10 and a maximum field effect mobility of 8.6 cm V s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c12186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!