A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Can the impact of canopy trees on soil and understory be altered using litter additions? | LitMetric

Can the impact of canopy trees on soil and understory be altered using litter additions?

Ecol Appl

Department of Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California, 93106, USA.

Published: January 2022

Trees can have large effects on soil nutrients in ways that alter succession, particularly in the case of nitrogen-(N)-fixing trees. In Hawai'i, forest restoration relies heavily on use of a native N-fixing tree, Acacia koa (koa), but this species increases soil-available N and likely facilitates competitive dominance of exotic pasture grasses. In contrast, Metrosideros polymorpha ('ōhi'a), the dominant native tree in Hawai'i, is less often planted because it is slow growing; yet it is typically associated with lower soil N and grass biomass, and greater native understory recruitment. We experimentally tested whether it is possible to reverse high soil N under koa by adding 'ōhi'a litter, using additions of koa litter or no litter as controls, over 2.5 yr. We then quantified natural litterfall and decomposition rates of 'ōhi'a and koa litter to place litter additions in perspective. Finally, we quantified whether litter additions altered grass biomass and if this had effects on native outplants. Adding 'ōhi'a litter increased soil carbon, but increased rather than decreased inorganic soil N pools. Contrary to expectations, koa litter decomposed more slowly than 'ōhi'a, although it released more N per unit of litter. We saw no reduction in grass biomass due to 'ōhi'a litter addition, and no change in native outplanted understory survival or growth. We conclude that the high N soil conditions under koa are difficult to reverse. However, we also found that outplanted native woody species were able to decrease exotic grass biomass over time, regardless of the litter environment, making this a better strategy for lowering exotic species impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2477DOI Listing

Publication Analysis

Top Keywords

grass biomass
16
litter
12
'ōhi'a litter
12
litter additions
12
koa litter
12
high soil
8
adding 'ōhi'a
8
soil
7
koa
7
native
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!