MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis.

Pharmacol Res

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA. Electronic address:

Published: December 2021

Cardiac fibrosis is one of the main characteristics of diabetic cardiomyopathy and manifests excessive accumulation of extracellular matrix proteins in the heart. Several signaling pathways have been proposed for pathogenesis of cardiac fibrosis in the diabetic heart. TGF-β/Smad2/3-dependent or independent pathway is the major signaling molecule core in the pathogenesis of cardiac fibrosis. MicroRNAs (miRNAs, miR) are ~22-nuceotide regulatory RNAs that are involved in gene silencing through the degradation of post-transcriptional mRNA or suppression of the expressed proteins. Hyperglycemia in the diabetic heart regulates expression of some miRNAs. Target molecules of miRNAs can be identified through biocomputational database initial screening and dual luciferase assay validation. miR-21, miR-150-5p, miR-155, miR-216a-3p, miR-221-3p, miR-223, and miR-451 were up-regulated in the diabetic heart and promoted cardiac fibrosis through targeting signaling pathways in cardiac fibroblasts, endothelial cells, and cardiac myocytes. miR-15a/-15b, miR-18a-5p, miR-20a-5p, miR-26b-5p, miR-29, miR-133a, miR-141, miR-146, miR-200b, miR-203, miR-222, and miR-551b-5p were down-regulated in the diabetic heart and exhibited anti-fibrosis when they were overexpressed. miRNAs are stable molecules and may reflect the pathological changes of organs. Some miRNAs have been detected in the plasma or serum in patients with diabetes mellitus or heart failure. Exploration of targets and biomarkers of miRNA may provide additional information on pathogenesis and diagnosis of cardiac fibrosis and novel targets to tackle diabetic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2021.105941DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
24
diabetic heart
16
cardiac
8
diabetic cardiomyopathy
8
signaling pathways
8
pathogenesis cardiac
8
fibrosis
6
diabetic
6
heart
6
mirnas
5

Similar Publications

Background: This study aimed to investigate the risk factors related to the failure of initial combined local methotrexate (MTX) treatment and minimally invasive surgery for late cesarean scar pregnancy (CSP).

Methods: This retrospective case-control study was conducted between January 2016 and December 2023, involving patients with late CSP (≥ 8 weeks) who received local MTX injection combined with either hysteroscopic or laparoscopic surgery. Cesarean scar pregnancy was classified as type I, II, or III based on the direction of growth of the gestational sac and the residual myometrial thickness as assessed by ultrasound.

View Article and Find Full Text PDF

Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2.

Chin J Integr Med

January 2025

Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.

Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.

Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.

View Article and Find Full Text PDF

Heart remodelling affects ECG in rat DOCA/salt model.

Physiol Res

December 2024

Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function.

View Article and Find Full Text PDF

Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.

Materials And Methods: A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!