Muscular dystrophy is a well-known genetically heterogeneous group of rare muscle disorders. This progressive disease causes the breakdown of skeletal muscles over time and leads to grave weakness. This breakdown is caused by a diverse pattern of mutations in dystrophin and dystrophin associated protein complex. These mutations lead to the production of altered proteins in response to which, the body stimulates production of various cytokines and immune cells, particularly reactive oxygen species and NFκB. Immune cells display/exhibit a dual role by inducing muscle damage and muscle repair. Various anti-oxidants, anti-inflammatory and glucocorticoid drugs serve as potent therapeutics for muscular dystrophy. Along with the above mentioned therapeutics, induced pluripotent stem cells also serve as a novel approach paving a way for personalized treatment. These pluripotent stem cells allow regeneration of large numbers of regenerative myogenic progenitors that can be administered in muscular dystrophy patients which assist in the recovery of lost muscle fibers. In this review, we have summarized gene-editing, immunological and induced pluripotent stem cell based therapeutics for muscular dystrophy treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2021.174568 | DOI Listing |
Neuromuscul Disord
December 2024
Service de Neuromyologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France Institut de Myologie, Sorbonne Université, APHP, Paris, France. Electronic address:
Dysferlinopathies, caused by mutations in the dysferlin gene (DYSF) encoding the dysferlin protein, are a clinically heterogeneous group of autosomal recessive muscular dystrophies whose phenotypic spectrum is still evolving. Here we described a patient reporting diffuse muscular pain non related to physical exercise, mimicking fibromyalgic syndrome. Electroneuromyography was normal.
View Article and Find Full Text PDFNeuromuscul Disord
January 2025
Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
Fukuyama congenital muscular dystrophy (FCMD) is the second most common childhood-onset muscular dystrophy in Japan. However, only a few comprehensive studies have investigated cardiac complications associated with FCMD, with none on arrhythmias. The present study evaluated 78 Holter electrocardiograms from 15 patients with FCMD.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:
Confocal imaging is a powerful tool capable of analyzing cellular spatial data within a given tissue. Here, we present a protocol for preparing optically cleared extensor digitorum longus (EDL) skeletal muscle samples suitable for confocal imaging/computational analysis. We describe steps for sample preparation (including perfusion fixation and tissue clearing of muscle samples), image acquisition, and computational analysis, with sample segmentation/3D rendering outlined.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!