Recent failure of phase 3 trials and paucity of druggable oncogenic drivers hamper developmental therapeutics in sarcomas. Antibody-based therapeutics, like antibody-drug conjugates (ADCs) and chimeric antigen receptor (CAR)-based therapeutics, have emerged as promising strategies for anticancer drug delivery. The efficacy of these novel therapies is highly dependent on expression of the antibody target. We used RNA sequencing data from Cancer Genome Atlas (TCGA) to analyze expression of target antigens in sarcoma subtypes including dedifferentiated liposarcoma (DDLPS; n = 50), uterine leiomyosarcoma (ULMS; n = 27), leiomyosarcoma (STLMS; n = 53), undifferentiated pleomorphic sarcoma (UPS; n = 44), myxofibrosarcoma (MFS; n = 17), synovial sarcoma (SS; n = 10), and malignant peripheral nerve sheath tumor (MPNST; n = 5). We searched published literature and clinicaltrial.gov for ADC targets, bispecific antibodies, immunotoxins, radioimmunoconjugates, SPEAR T-cells, and CAR's that are in clinical trials. CD70 expression was significantly higher in DDLPS, UPS, and MFS than SS and STLMS. CDH3 expression was greater in LMS and ULMS than UPS (P < 0.001), MFS (P < 0.001), and DDLPS (P < 0.001). ERBB2 expression was low; however, it was overexpressed in MPNST when compared with UPS (P < 0.001), and MFS (P < 0.01). GPNMB was highly expressed in most sarcomas, with the exception of SS. LRRC15 also appeared to be a relevant target, especially in UPS. MSLN expression was relatively low except in SS and MPNST. PDGFRA was also highly expressed in most sarcomas with the exception of ULMS and STLMS. TNFRSF8 seems to be most appropriate in DDLPS, as well as MFS. AXL was expressed especially in MFS and STLMS. Sarcoma subtypes express multiple target genes relevant for ADCs, SPEAR T-cells and CAR's, warranting further clinical validation and evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.currproblcancer.2021.100794DOI Listing

Publication Analysis

Top Keywords

chimeric antigen
8
sarcoma subtypes
8
spear t-cells
8
t-cells car's
8
mfs stlms
8
0001 mfs
8
expression low
8
highly expressed
8
expressed sarcomas
8
sarcomas exception
8

Similar Publications

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy.

View Article and Find Full Text PDF

Boosting CAR-T cell therapy through vaccine synergy.

Trends Pharmacol Sci

January 2025

Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME).

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

Rheumatologic complications of CAR-T Cell therapy. Experience of a single center.

Semin Arthritis Rheum

December 2024

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Immunology, CDB, Hospital Clínic, Barcelona, Spain.

Introduction: Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a promising treatment for hematological malignancies. However, its association with immune-related complications such as rheumatic complications, is not well defined.

Methods: We conducted a retrospective study to analyze rheumatic complications in 310 patients treated with CAR-T therapy at a single center from January 2020 to May 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!