Synthesis of reusable and renewable microporous organic networks for the removal of halogenated contaminants.

J Hazard Mater

College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China. Electronic address:

Published: February 2022

Microporous organic networks (MONs) have shown great potential in the removal of environmental contaminants. However, all studies have focused on the design and construction of novel and efficient adsorbents, and the recycling and reuse of adsorbates were disregarded. In this study, we report a feasible approach to synthesize renewable and reusable MONs by using target halogenated contaminants such as tetrabromobisphenol A (TBBPA), 2,3-dichlorophenol (2,3-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) as starting monomers. TBBPA, 2,3-DCP, and 2,4,6-TCP acted as hazardous contaminants and starting monomers for MONs, leading to the recycling of both adsorbents and adsorbates. The obtained TBBPA-MON, 2,3-DCP-MON, and 2,4,6-TCP-MON not only offered good reusability and large adsorption capacity for their elimination but also provided good adsorption for other phenolic contaminants relying on multiple interactions. Density functional theory calculation indicated the dominant role of π-π and hydrophobic interactions and the secondary role of hydrogen bonding interactions during the adsorption process. The used TBBPA-MON could be reused and the eluted TBBPA could be recycled and renewed for the construction of fresh MONs. This study provided a feasible approach to design and synthesize renewable MONs for environmental contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127485DOI Listing

Publication Analysis

Top Keywords

microporous organic
8
organic networks
8
halogenated contaminants
8
environmental contaminants
8
feasible approach
8
synthesize renewable
8
starting monomers
8
contaminants
6
mons
5
synthesis reusable
4

Similar Publications

n-butane (n-C4H10) and isobutane (i-C4H10) are important raw materials in chemical industry. The separation of the two hydrocarbon isomers via distillation is challenging and energy-consuming. Herein we report the adsorption behavior of a microporous cobalt formate framework [Co3(HCOO)6] for potential kinetic separation of butane isomers.

View Article and Find Full Text PDF

Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.

View Article and Find Full Text PDF

Polysaccharides-Directed Biomineralization of Enzymes in Hierarchical Zeolite Imidazolate Frameworks for Electrochemical Detection of Phenols.

ACS Appl Mater Interfaces

January 2025

Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.

Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.

View Article and Find Full Text PDF

This work aimed to investigate the adsorption of organic compounds (4-nitroaniline and 4-chlorophenoxyacetic acid) on activated carbon in the presence of selected dyes (uranine and Acid Red 88) and surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide). The adsorbent, i.e.

View Article and Find Full Text PDF

Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds.

ChemSusChem

December 2024

National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.

The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!