A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revisiting the mechanism responsible for the light-struck flavor in white wines and Champagnes. | LitMetric

Revisiting the mechanism responsible for the light-struck flavor in white wines and Champagnes.

Food Chem

Univ. Bordeaux, CNRS UMR 5255, Inst. des Sciences Moléculaires, 351, Cours de la Libération, 33405 Talence, France. Electronic address:

Published: March 2022

The mechanism responsible for the appearance of the light-struck fault upon exposure of white wines and Champagnes to natural or artificial light is examined in light of new experiments involving methionine analogues. The latter show that the formation of volatile sulfur species upon irradiation of riboflavin in the presence of methionine in model wine solutions at pH 3 is not dependent on the existence of neighboring group stabilization of the sulfur-centered cation radical through a 5- or 6-membered cyclic intermediate. Instead, the formation of a dimer radical cation is proposed in agreement with the formation of oxidation products such as dimethyl disulfide at early reaction times and the observed steric effect upon product distribution. The limiting quantum yield for the release of sulfur atoms from a solution of methionine in model wine solutions at pH 3.5 containing riboflavin was found to be 0.26 (435 nm irradiation). No dependence of the quantum yield or product distribution on the irradiation wavelength was found over the range 365-90 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.131281DOI Listing

Publication Analysis

Top Keywords

mechanism responsible
8
white wines
8
wines champagnes
8
methionine model
8
model wine
8
wine solutions
8
product distribution
8
quantum yield
8
revisiting mechanism
4
responsible light-struck
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!