A common strategy to improve transmembrane transport in polarized epithelial cells based on sorting signals: Guiding nanocarriers to TGN rather than to the basolateral plasma membrane directly.

J Control Release

Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. Electronic address:

Published: November 2021

AI Article Synopsis

  • Researchers are exploring ways to improve oral drug delivery by overcoming the intestinal barrier using nanocarriers, particularly through active-targeting methods.
  • However, most existing strategies are limited to specific receptors or cell types, prompting the investigation of more general enhancement techniques for transmembrane transport.
  • The study found that modifying micelles to target the Trans-Golgi network (TGN) significantly improves their ability to cross biological barriers, while targeting the basolateral membrane was less effective.

Article Abstract

The intestinal barrier has always been the rate-limiting step in the oral administration process. To overcome the intestinal barrier, researchers have widely adopted nanocarriers, especially active-targeting nanocarriers strategies. However, most of these strategies focus on the ligand decoration of nanocarriers targeting specific receptors, so their applications are confined to specific receptors or specific cell types. In this study, we tried to investigate more common strategies in the field of transmembrane transport enhancement. Trans-Golgi network (TGN) is the sorting center of biosynthetic route which could achieve polarized localization of proteins in polarized epithelial cells, and the basolateral plasma membrane is where all transcytotic cargos have to pass through. Thus, it is expected that guiding nanocarriers to TGN or basolateral plasma membrane may improve the transcytosis. Hence, we choose sorting signal peptide to modify micelles to guide micelles to TGN (named as BAC decorated micelles, BAC-M) or to basolateral plasma membrane (named as STX decorated micelles, STX-M). By incorporating coumarin-6 (C6) or Cy5-PEG-PCL in the micelles to indicate the behavior of micelles, the effects of these two strategies on the transcytosis were investigated. To our surprise, BAC-M and STX-M behaved quite differently when crossing biological barriers. BAC-M showed significant superiority in colocalization with TGN, transmembrane transport and even in vivo absorption, while STX-M had no significant difference from blank micelles. Further investigation revealed that the strategy of directly guiding nanocarriers to the basolateral plasma membrane (STX-M) only caused the stack of vesicles near the basolateral plasma membrane. So, we concluded that guiding nanocarriers to TGN which related to secretion may contribute to the transmembrane transport. This common strategy based on the physiological function of TGN in polarized epithelial cells will have broad application prospects in overcoming biological barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2021.10.004DOI Listing

Publication Analysis

Top Keywords

basolateral plasma
24
plasma membrane
24
transmembrane transport
16
guiding nanocarriers
16
polarized epithelial
12
epithelial cells
12
nanocarriers tgn
12
common strategy
8
tgn basolateral
8
intestinal barrier
8

Similar Publications

Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.

Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.

View Article and Find Full Text PDF

Comprehensive study of SNAREs involved in the post-Golgi transport in photoreceptors.

Front Cell Dev Biol

December 2024

Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan.

Polarized transport is essential for the construction of multiple plasma membrane domains within cells. photoreceptors serve as excellent model systems for studying the mechanisms of polarized transport. We conducted a comprehensive soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) screening of the fly genome using RNAi knockdown and CRISPR/Cas9 somatic knockout combined with the CoinFLP system to identify SNAREs involved in post-Golgi trafficking.

View Article and Find Full Text PDF

The cornea is the transparent part of the eye's outer sheath and the primary refractive element in the optical system of all vertebrates allowing light to focus on the central part of the retina. Maintenance of its curvature and clarity is therefore essential, providing a smooth optical surface and a protective goggle to ensure a focused image on the retina. However, the corneas of birds have been largely overlooked and the structures and mechanisms controlling corneal shape and hence visual acuity remain unknown.

View Article and Find Full Text PDF

The widely prescribed oral anti-diabetic drug metformin is eliminated unchanged in the urine primarily through active tubular secretion. This process is mediated by organic cation transporter 2 (OCT2), an uptake transporter expressed on the basolateral membrane of renal proximal tubule cells. Metformin uptake into the liver, the site of action, is mediated by OCT1, which is expressed on the sinusoidal membrane of hepatocytes.

View Article and Find Full Text PDF

Oenobiol Sun Expert, a food formulation designed to enhance skin health prior to sun exposure, has been optimized by incorporating the OenoGrape Advanced Complex, which includes grape pomace extract, increased selenium content and 10% lycopene-rich tomato extract, with these constituents exhibiting high antioxidant potential. To evaluate the effects of these individual ingredients and the overall formulation at the cellular level, the AOP1 cell antioxidant efficacy assay was employed to measure the intracellular free radical scavenging activity, while the Cell Antioxidant Assay (CAA or DCFH-DA) assay was used to assess peroxidation scavenging at the plasma membrane level. The indirect antioxidant activity was examined using stably transfected cell lines containing a luciferase reporter gene controlled by the Antioxidant Response Element (ARE), which activates the endogenous antioxidant system via the Nrf2/Keap1-ARE pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!