There is increasing evidence that cells cultured in three-dimensional (3D) settings have superior performance compared to their traditional counterparts in monolayers. This has been attributed to cell-cell and cell-extracellular matrix interactions that more closely resemble the in vivo tissue architecture. The rapid adoption of 3D cell culture systems as experimental tools for diverse applications has not always been matched by an improved understanding of cell behavior in different 3D environments. Here, we studied human mesenchymal stem/stromal cells (hMSCs) as scaffold-free self-assembled aggregates of low and high cell number and compared them to cell-laden alginate hydrogels with and without arginine-glycine-aspartic acid peptides. We observed a significant decrease in the size of cell-only aggregates over 14 days in culture compared to the cells encapsulated in alginate hydrogels. Alginate hydrogels had persistently more living cells for a longer period (14 days) in culture as measured by total DNA content. Proliferation studies revealed that a weeklong culture of hMSCs in 3D culture, whether as aggregates or cell-laden alginate hydrogels, reduced their proliferation over time. Cell cycle analysis found no significant differences between days 1 and 7 for the different culture systems. The findings of this study improve our understanding of how aggregate cultures differ with or without a hydrogel carrier, and whether aggregation itself is important when it comes to the 3D culture of hMSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297862 | PMC |
http://dx.doi.org/10.1002/term.3257 | DOI Listing |
Mol Biol Rep
January 2025
Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China. Electronic address:
The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Bioprinting Laboratories Inc., Dallas, Texas, USA.
Recent advancements in three-dimensional (3D) cell culture technologies, such as cell spheroids, organoids, and 3D bioprinted tissue constructs, have significantly improved the physiological relevance of in vitro models. These models better mimic tissue structure and function, closely emulating in vivo characteristics and enhancing phenotypic analysis, critical for basic research and drug screening in personalized cancer therapy. Despite their potential, current 3D cell culture platforms face technical challenges, which include user-unfriendliness in long-term dynamic cell culture, incompatibility with rapid cell encapsulation in biomimetic hydrogels, and low throughput for compound screening.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Central Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
Background: Nitric oxide (NO) is a low-toxicity and high-efficiency anticancer treatment that can augment the cytotoxicity of doxorubicin (DOX) towards breast cancer cells, thereby exhibiting a favorable effect on chemotherapy sensitization.
Objective: The study aimed to establish a hydrogel that sensitizes chemotherapy by inducing local inflammatory stimulation to change the tumor microenvironment and promote NO production. The purpose of the study was to examine the anti-tumor effect in vivo and in vitro.
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India.
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!