Purpose: Upper-body exercise performed in a cold environment may increase cardiovascular strain, which could be detrimental to patients with coronary artery disease (CAD). This study compared cardiovascular responses of CAD patients during graded upper-body dynamic and static exercise in cold and neutral environments.

Methods: 20 patients with stable CAD performed 30 min of progressive dynamic (light, moderate, and heavy rating of perceived exertion) and static (10, 15, 20, 25 and 30% of maximal voluntary contraction) upper body exercise in cold (- 15 °C) and neutral (+ 22 °C) environments. Heart rate (HR), blood pressure (BP) and electrocardiographic (ECG) responses were recorded and rate pressure product (RPP) calculated.

Results: Dynamic-graded upper-body exercise in the cold increased HR by 2.3-4.8% (p = 0.002-0.040), MAP by 3.9-5.9% (p = 0.038-0.454) and RPP by 18.1-24.4% (p = 0.002-0.020) when compared to the neutral environment. Static graded upper-body exercise in the cold resulted in higher MAP (6.3-9.1%; p = 0.000-0.014), lower HR (4.1-7.2%; p = 0.009-0.033), but unaltered RPP compared to a neutral environment. Heavy dynamic exercise resulted in ST depression that was not related to temperature. Otherwise, ECG was largely unaltered during exercise in either thermal condition.

Conclusions: Dynamic- and static-graded upper-body exercise in the cold involves higher cardiovascular strain compared with a neutral environment among patients with stable CAD. However, no marked changes in electric cardiac function were observed. The results support the use of upper-body exercise in the cold in patients with stable CAD.

Trial Registration: Clinical trial registration NCT02855905 August 2016.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748357PMC
http://dx.doi.org/10.1007/s00421-021-04826-xDOI Listing

Publication Analysis

Top Keywords

exercise cold
28
upper-body exercise
24
patients stable
12
compared neutral
12
neutral environment
12
exercise
10
cardiovascular responses
8
dynamic static
8
cold
8
cold environment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!