Caspases are an evolutionary conserved family of cysteine-dependent proteases that are involved in many vital cellular processes including apoptosis, proliferation, differentiation and inflammatory response. Dysregulation of caspase-mediated apoptosis and inflammation has been linked to the pathogenesis of various diseases such as inflammatory diseases, neurological disorders, metabolic diseases, and cancer. Multiple caspase inhibitors have been designed and synthesized as a potential therapeutic tool for the treatment of cell death-related pathologies. However, only a few have progressed to clinical trials because of the consistent challenges faced amongst the different types of caspase inhibitors used for the treatment of the various pathologies, namely an inadequate efficacy, poor target specificity, or adverse side effects. Importantly, a large proportion of this failure lies in the lack of understanding various caspase functions. To overcome the current challenges, further studies on understanding caspase function in a disease model is a fundamental requirement to effectively develop their inhibitors as a treatment for the different pathologies. Therefore, the present review focuses on the descriptive properties and characteristics of caspase inhibitors known to date, and their therapeutic application in animal and clinical studies. In addition, a brief discussion on the achievements, and current challenges faced, are presented in support to providing more perspectives for further development of successful therapeutic caspase inhibitors for various diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519909 | PMC |
http://dx.doi.org/10.1038/s41419-021-04240-3 | DOI Listing |
Free Radic Biol Med
December 2024
Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. Electronic address:
Background: Lipotoxicity is a significant factor in the pathogenesis of diabetic cardiomyopathy (DbCM), a condition characterized by mitochondrial fragmentation and pyroptosis. Mitochondrial fission protein 1 (FIS1) plays a role in mitochondrial fission by anchoring dynamin-related protein 1 (DRP1). However, the specific contribution of FIS1 to DbCM remains unclear.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Complementary and Integrative Medicine, Department of Traditional, Ankara Yıldırım Beyazıt University, Ankara, Türkiye, Turkey.
It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
The NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome is a well-known and frequently cited regulator of caspase-1 activation. It plays a significant role in several pathophysiological processes and is a major regulator of the innate immune response. A growing amount of scientific evidences for its aberrant activation in various chronic inflammatory diseases attracts a growing interest in the development of new NLRP3 inhibitors.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China.
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC.
View Article and Find Full Text PDFGastroenterology
December 2024
Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX. Electronic address:
Background & Aims: Dilated intercellular space (DIS) in esophageal epithelium, a sign of impaired barrier function, is a characteristic finding of GERD that also is found in obese patients without GERD. We have explored molecular mechanisms whereby adipose tissue products might impair esophageal barrier integrity.
Methods: We established cultures of visceral fat obtained during foregut surgery from obese and non-obese patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!