Childhood lung function as a determinant of menopause-dependent lung function decline.

Maturitas

Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Australia; School of Medicine, University of Tasmania, Hobart, Tas, 7001, Australia. Electronic address:

Published: November 2021

Rationale: The naturally occurring age-dependent decline in lung function accelerates after menopause, likely due to the change of the endocrine balance. Although increasing evidence shows suboptimal lung health in early life can increase adult  susceptibility to insults, the potential effect of poor childhood lung function on menopause-dependent lung function decline has not yet been investigated.

Objectives: To study whether menopause-dependent lung function decline, assessed as forced vital capacity (FVC) and forced expiratory volume in one second (FEV1), is determined by childhood lung function.

Methods: The Tasmanian Longitudinal Health Study, a cohort born in 1961, underwent spirometry at age seven.  At ages 45 and 50 serum samples, spirometry and questionnaire data were collected (N = 506). We measured follicle stimulating and luteinizing hormones to determine menopausal status using latent profile analysis. The menopause-dependent lung function decline was investigated using linear mixed models, adjusted for anthropometrics, occupational level, smoking, asthma, asthma medication and study year, for the whole study population and stratified by tertiles of childhood lung function.

Measurements And Main Results: The overall menopause-dependent lung function decline was 19.3 mL/y (95%CI 2.2 to 36.3) for FVC and 9.1 mL/y (-2.8 to 21.0) for FEV1. This was most pronounced (pinteraction=0.03) among women within the lowest tertile of childhood lung function [FVC 22.2 mL/y (1.1 to 43.4); FEV1 13.9 mL/y (-1.5 to 29.4)].

Conclusions: Lung function declines especially rapidly in postmenopausal women who had poor low lung function in childhood. This provides novel insights into respiratory health during reproductive aging and emphasizes the need for holistic public health strategies covering the whole lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.maturitas.2021.08.001DOI Listing

Publication Analysis

Top Keywords

lung function
44
childhood lung
20
menopause-dependent lung
20
function decline
20
lung
13
function
11
childhood
6
decline
6
menopause-dependent
5
function determinant
4

Similar Publications

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Background: Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring.

View Article and Find Full Text PDF

Objectives: Cisplatin (DDP) resistance remains a primary cause of chemotherapy failure and recurrence of non-small cell lung cancer (NSCLC). Abnormal high microsomal glutathione transferase 1 (MGST1) expression has been found in DDP-resistant NSCLC cells. This study aimed to explore the function and mechanism of MGST1 in DDP resistance of NSCLC cells.

View Article and Find Full Text PDF

Fine particulate matter (PM), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM exposure and its association with asthma in human airway epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!