A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling oxidised polypyrrole in the condensed phase with a novel force field. | LitMetric

Modeling oxidised polypyrrole in the condensed phase with a novel force field.

J Phys Condens Matter

Center for Simulation and Modeling and Department of Computational and Data Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America.

Published: March 2022

A novel model potential is developed for simulating oxidised oligopyrroles in condensed phases. The force field is a coarse grained model that represents the pyrrole monomers as planar rigid bodies with fixed charge and dipole moment and the chlorine dopants as point atomic charges. The analytic function contains 17 adjustable parameters that are initially fitted on a database of small structures calculated within all-electron density functional theory. A subsequent potential function refinement is pursued with a battery of condensed phase isothermal-isobaric Metropolis Monte Carlo in-silico simulations at ambient conditions with the goal of implementing a hybrid parametrization protocol enabling agreement with experimentally known thermodynamic properties of oxidised polypyrrole. The condensed system is composed of oligomers containing 12 monomers with a 1:3 dopant-to-monomer concentration. The final set of force field optimised parameters yields an equilibrium density of the condensed system at ambient conditions in excellent agreement with oxidised polypyrrole samples synthesised in wet-laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac303bDOI Listing

Publication Analysis

Top Keywords

oxidised polypyrrole
12
force field
12
polypyrrole condensed
8
condensed phase
8
ambient conditions
8
condensed system
8
condensed
5
modeling oxidised
4
phase novel
4
novel force
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!