High expression of SARS-CoV2 viral entry-related proteins in human limbal stem cells.

Ocul Surf

Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Medicine, VA Boston Healthcare System, Boston, MA, United States. Electronic address:

Published: January 2022

Purpose: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). While the ocular surface is considered one of the major SARS-CoV2 transmission routes, the specific cellular tropism of SARS-CoV2 is not fully understood. In the current study, we evaluated the expression and regulation of two SARS-CoV2 viral entry proteins, TMPRSS2 and ACE2, in human ocular epithelial cells and stem cells.

Methods: TMPRSS2 and ACE2 expression in ABCB5-positive limbal stem cells (LSCs) were assessed by RNAseq, flow cytometry and immunohistochemistry. PAX6, TMPRSS2, and ACE2 mRNA expression values were obtained from the GSE135455 and DRA002960 RNA-seq datasets. siRNA-mediated PAX6 knockdown (KD) was performed in limbal and conjunctival epithelial cells. TMPRSS2 and ACE2 expression in the PAX6 KD cells was analyzed by qRT-PCR and Western blot.

Results: We found that ABCB5-positive LSCs express high levels of TMPRSS2 and ACE2 compared to ABCB5-negative limbal epithelial cells. Mechanistically, gene knockout and overexpression models revealed that the eye transcription factor PAX6 negatively regulates TMPRSS2 expression. Therefore, low levels of PAX6 in ABCB5-positive LSCs promote TMPRSS2 expression, and high levels of TMPRSS2 and ACE2 expression by LSCs indicate enhanced susceptibility to SARS-CoV2 infection in this stem cell population.

Conclusions: Our study points to a need for COVID-19 testing of LSCs derived from donor corneas before transplantation to patients with limbal stem cell deficiency. Furthermore, our findings suggest that expandable human ABCB5+ LSC cultures might represent a relevant novel model system for studying cellular SARS-CoV2 viral entry mechanisms and evaluating related targeting strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511872PMC
http://dx.doi.org/10.1016/j.jtos.2021.10.002DOI Listing

Publication Analysis

Top Keywords

tmprss2 ace2
24
sars-cov2 viral
12
limbal stem
12
epithelial cells
12
ace2 expression
12
stem cells
8
viral entry
8
tmprss2
8
abcb5-positive lscs
8
high levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!