Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seeking out fish meal (FM) alternatives is an important requirement for aquaculture all over the world. And most practitioners believe that the plant protein is most potential for FM surrenal. While high plant protein feed caused some common problems in aquatic livestock: the absorption rate and growth rate are decreased, and even caused digestive tract inflammation. In present study, the inflence of high plant protien feed in Trachinotus ovatus was investigated using illumina HiSeqTM2000 based RNA-Seq. By comparing the two groups of cDNA libraries developed from high plant protien based diet or FM based diet fed T. ovatus livers, 836 unigenes were significantly upregulated, and 345 were significantly down regulated. KEGG analysis indicated that the differentially expressed genes (DEGs) are mainly metabolic-related genes. It was found that more than 28 DGEs beloned to the protein metabolism and absorption, lipid biosynthesis or other metabolic pathways. It indicated that high plant protein based diet had broad effects on metabolism on T. ovatus. There were also more DEGs belong to immune-related signaling pathways, include genes were involved in pathpathogen resistance and genes related to immunity system. These DEGs provided useful clues to explore the mechanisms that high plant protein based diet caused side effects on T. ovatus. These results improved our current understanding of the response of high plant protein based diet in T. ovatus, and outstanding the reasons of the side effect caused by high protein based diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2021.10.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!