Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants.

Environ Pollut

Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India. Electronic address:

Published: January 2022

Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.118342DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
sensing promising
8
industrial waste
8
persistent organic
8
organic pollutants
8
wastewater treatment
8
promising tool
4
tool degradation
4
degradation industrial
4
waste persistent
4

Similar Publications

Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.

View Article and Find Full Text PDF

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Photodynamic bactericidal nanomaterials in food packaging: From principle to application.

J Food Sci

January 2025

Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.

Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!