Extractive membrane bioreactor to detoxify industrial/hazardous landfill leachate and facilitate resource recovery.

Sci Total Environ

Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione, Rome, Italy. Electronic address:

Published: February 2022

Landfill leachate is a highly polluted and toxic waste stream harmful to the environment and human health, its biological treatment, even if challenging, offers the opportunity of recovering valuable resources. In this study, we propose the application of an extractive membrane bioreactor equipped with a polymeric tubing, made of Hytrel, as an innovative device able to remove specific organic toxic compounds of the leachate and, at the same time, to produce an effluent rich in valuable chemicals suitable for recovery. The leachate treatment consists in a two-step process: the extraction of specific toxic compounds through the polymeric tubing based on the affinity with the polymer, and their subsequent biodegradation in controlled conditions in the bulk phase of the extractive membrane bioreactor, thus avoiding the direct contact of the microbial consortium with the toxic leachate. Three synthetic streams simulating leachates produced by landfills of typical industrial/hazardous waste, mixed municipal and industrial solid waste, and oil shale industry waste, whose toxic fraction is mainly constituted by phenolic compounds, have been tested. Successful performance was achieved in all the tested conditions, with high removal (≥98%) and biodegradation efficiencies (89-95%) of the toxic compounds. No mass transfer limitations across the tubing occurred during the operation and a marginal accumulation (in the range of 4-7%) into the polymer has been observed. Furthermore, volatile fatty acids and inorganic compounds contained in the leachates were fully recovered in the treated effluent. Feasibility study confirmed the applicability of the proposed bioreactor as a powerful technology able to achieve high toxic removal efficiency in leachate treatment and facilitate resource recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150892DOI Listing

Publication Analysis

Top Keywords

extractive membrane
12
membrane bioreactor
12
toxic compounds
12
landfill leachate
8
facilitate resource
8
resource recovery
8
polymeric tubing
8
leachate treatment
8
toxic
7
leachate
6

Similar Publications

Severity of metabolic derangement predicts survival after out-of-hospital cardiac arrest and the likelihood of benefiting from extracorporeal life support.

Emergencias

December 2024

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seúl, República de Corea. Department of Digital Health, SAIHST, Sungkyunkwan University, Seúl, República de Corea.

Objective: To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS).

Methods: A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

Origanum syriacum Induces Apoptosis in Lung Cancer Cells by Altering the Ratio of Bax/Bcl2.

Anticancer Agents Med Chem

January 2025

Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, 27410, Gaziantep, Turkey.

Background: The lung cancer is the leading cause of death worldwide. Although methods such as surgery, chemotherapy, radiotherapy, and immunotherapy are used for treatment, these treatments are sometimes inadequate. In addition, the number of chemotherapeutic agents used is very limited, and it is very important to use new natural agents that can increase the effect of these methods used in treatment.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!