Chemerin-9 stimulates migration in rat cardiac fibroblasts in vitro.

Eur J Pharmacol

Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan. Electronic address:

Published: December 2021

Since chemerin is an adipocytokine whose concentration in blood increases in the subjects with various cardiac diseases, chemerin may be involved in pathogenesis of cardiac diseases. In the present study, we examined the effects of chemerin-9, an active fragment of chemerin, on functions of cardiac fibroblasts, which are involved in pathophysiology of cardiac diseases. Primary cardiac fibroblasts were enzymatically isolated from adult male Wistar rats. Migration of cardiac fibroblasts was measured by a Boyden chamber assay and a scratch assay. Phosphorylation of Akt and extracellular signal-regulated kinase (ERK) was measured by Western blotting. Reactive oxygen species (ROS) production was measured by 2',7'-dichlorodihydrofluoresein staining. Chemerin-9 significantly stimulated migration in cardiac fibroblasts. Chemerin-9 significantly stimulated phosphorylation of Akt and ERK as well as ROS production. An Akt pathway inhibitor, LY294002, an ERK pathway inhibitor, PD98059, an antagonist of chemokine-like receptor 1 (CMKLR1), 2-(α-Napththoyl) ethyltrimethylammonium iodide, or an antioxidant, N-acetyl-L-cysteine prevented the migration induced by chemerin-9. In summary, we for the first time revealed that chemerin-9 stimulates migration perhaps through the ROS-dependent activation of Akt and ERK via CMKLR1 in cardiac fibroblasts. It is proposed that chemerin plays a role in the pathogenesis of cardiac diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.174566DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
24
cardiac diseases
16
cardiac
10
chemerin-9 stimulates
8
stimulates migration
8
pathogenesis cardiac
8
migration cardiac
8
phosphorylation akt
8
ros production
8
chemerin-9 stimulated
8

Similar Publications

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a heterogeneous cardiac disease and one of its major challenges is the limited accuracy in stratifying the risk of sudden cardiac death (SCD). Positron emission tomography (PET), through the evaluation of myocardial blood flow (MBF) and metabolism using fluorodeoxyglucose (FDG) uptake, can reveal microvascular dysfunction, ischemia, and increased metabolic demands in the hypertrophied myocardium. These abnormalities are linked to several factors influencing disease progression, including arrhythmia development, ventricular dilation, and myocardial fibrosis.

View Article and Find Full Text PDF

Serpina3k lactylation protects from cardiac ischemia reperfusion injury.

Nat Commun

January 2025

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Lactate produced during ischemia-reperfusion injury is known to promote lactylation of proteins, which play controversial roles. By analyzing the lactylomes and proteomes of mouse myocardium during ischemia-reperfusion injury using mass spectrometry, we show that both Serpina3k protein expression and its lactylation at lysine 351 are increased upon reperfusion. Both Serpina3k and its human homolog, SERPINA3, are abundantly expressed in cardiac fibroblasts, but not  in cardiomyocytes.

View Article and Find Full Text PDF

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!