Background: Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by decreased expression of frataxin, a protein involved in many cellular metabolic processes, including mitochondrial oxidative phosphorylation (OXPHOS). Our objective was to assess skeletal muscle oxidative metabolism in vivo in adults with FRDA as compared to adults without FRDA using chemical exchange saturation transfer (CrCEST) MRI, which measures free creatine (Cr) over time following an in-magnet plantar flexion exercise.
Methods: Participants included adults with FRDA (n = 11) and healthy adults (n = 25). All underwent 3-Tesla CrCEST MRI of the calf before and after in-scanner plantar flexion exercise. Participants also underwent whole-body dual-energy X-ray absorptiometry (DXA) scans to measure body composition and completed questionnaires to assess physical activity.
Results: We found prolonged post-exercise exponential decline in CrCEST (τCr) in the lateral gastrocnemius (LG, 274 s vs. 138 s, p = 0.01) in adults with FRDA (vs. healthy adults), likely reflecting decreased OXPHOS capacity. Adults with FRDA (vs. healthy adults) also engaged different muscle groups during exercise, as indicated by muscle group-specific changes in creatine with exercise (∆CrCEST), possibly reflecting decreased coordination. Across all participants, increased adiposity and decreased usual physical activity were associated with smaller ∆CrCEST.
Conclusion: In FRDA, CrCEST MRI may be a useful biomarker of muscle-group-specific decline in OXPHOS capacity that can be leveraged to track within-participant changes over time. Appropriate participant selection and further optimization of the exercise stimulus will enhance the utility of this technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010488 | PMC |
http://dx.doi.org/10.1007/s00415-021-10821-1 | DOI Listing |
Orphanet J Rare Dis
December 2024
Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.
Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.
View Article and Find Full Text PDFNeurol Clin Pract
February 2025
University of Rochester School of Medicine and Dentistry (JS, AV); Center for Health and Technology (CHeT) (JS, JW, AV, SJR, CE, AA, CZ, CRH), University of Rochester; University of Utah Spencer Fox Eccles School of Medicine (SJR); Des Moines University College of Osteopathic Medicine (AA); Department of Biostatistics and Neurology (ND), University of Rochester; Alzheimer's Disease Care, Research and Education Program (AD-CARE) (AM, SS-S, EJS), University of Rochester; and Department of Neurology (CRH), University of Rochester.
Background And Objectives: In preparation for future clinical trials involving individuals with Alzheimer disease (AD), mild cognitive impairment (MCI), and dementia, it is important to ascertain the widespread impact of symptoms from the direct perspectives of patients and caregivers. In this study, we performed cross-sectional surveys using large-scale patient and caregiver data to identify the prevalence and average impact of symptoms and symptomatic themes experienced by adults with AD, MCI, and dementia. Subsequent analyses were used to determine which demographic and disease-specific factors are associated with more severe disease.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil.
Friedreich's Ataxia (FRDA) is the most common autosomal recessive ataxia worldwide and is caused by biallelic unstable intronic GAA expansions at FXN. With its limited therapy and the recent approval of the first disease-modifying agent for FRDA, the search for biological markers is urgently needed to assist and ease the development of therapies. MiRNAs have emerged as promising biomarkers in various medical fields such as oncology, cardiology, epilepsy and neurology as well.
View Article and Find Full Text PDFNeurology
December 2024
Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany.
Sci Rep
November 2024
Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic.
Neuropsychiatric symptoms (NPS) are common in hereditary ataxias as a part of the cerebellar cognitive affective syndrome. In Friedreich ataxia (FRDA), one of the most common hereditary ataxias, depressive symptoms were previously reported, but little is known about other NPS. We aimed to study the presence and severity of a broad range of NPS in individuals with FRDA and assess the relationship between the NPS and the disease severity, cognition, and quality of life and to examine the concordance between the NPS reported by the patients and by their informants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!