In microtubule-based active nematics, motor-driven extensile motion of microtubule bundles powers chaotic large-scale dynamics. We quantify the interfilament sliding motion both in isolated bundles and in a dense active nematic. The extension speed of an isolated microtubule pair is comparable to the molecular motor stepping speed. In contrast, the net extension in dense 2D active nematics is significantly slower; the interfilament sliding speeds are widely distributed about the average and the filaments exhibit both contractile and extensile relative motion. These measurements highlight the challenge of connecting the extension rate of isolated bundles to the multimotor and multifilament interactions present in a dense 2D active nematic. They also provide quantitative data that is essential for building multiscale models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.148001 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro.
View Article and Find Full Text PDFNat Commun
January 2025
Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA.
Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood.
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China.
Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!