Manipulation of laser-assisted field evaporation taking place at a sub-picosecond time scale relies on a full understanding of the dynamics at a microscopic level. We use first-principles methods to investigate the mechanism of energy absorption and charge draining during fast evaporation of silicon in a high electrostatic field with ultrafast-laser illumination. The results show that laser energy absorption to trigger field evaporation can be described by an effective cross section, which depends on the photon frequency and the static field strength. The cross section is not affected by pulse duration or laser intensity, indicating that the absorption is first-order. It is found that the charge state of the evaporating ion fluctuates due to the collective excitation of electrons. The average charge state does not depend on laser parameters but only on the static field strength, in agreement with experimental observations. Our work provides theoretical insights into the manipulation of modern atom probe tomography and other ultrafast-laser-induced phenomena in high electric fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c06523 | DOI Listing |
BMC Chem
January 2025
Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye.
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.
View Article and Find Full Text PDFTalanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.
This article introduces an innovative multipurpose system that integrates a solar power plant with a coastal wind farm to generate refrigeration for refinery processes and industrial air conditioning. The system comprises multiple wind turbines, solar power plants, the Kalina cycle to provide partial energy for the absorption refrigeration cycle used in industrial air conditioning, and a compression refrigeration cycle for propane gas liquefaction. An extensive energy and exergy analysis was conducted on the proposed system, considering various thermodynamic parameters such as the solar power plant's energy output, the absorption chiller's cooling load, the electricity generated by the turbines, the wind turbines' power output, and the energy efficiency and exergy of each cycle within the system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!