As climate change threatens to cause increasingly frequent and severe natural disasters, decisionmakers must consider costly investments to enhance the resilience of critical infrastructures. Evaluating these potential resilience improvements using traditional cost-benefit analysis (CBA) approaches is often problematic because disasters are stochastic and can destroy even hardened infrastructure, meaning that the lifetimes of investments are themselves uncertain. In this article, we develop a novel Markov decision process (MDP) model for CBA of infrastructure resilience upgrades that offer prevention (reduce the probability of a disaster) and/or protection (mitigate the cost of a disaster) benefits. Stochastic features of the model include disaster occurrences and whether or not a disaster terminates the effective life of an earlier resilience upgrade. From our MDP model, we derive analytical expressions for the decisionmaker's willingness to pay (WTP) to enhance infrastructure resilience, and conduct a comparative static analysis to investigate how the WTP varies with the fundamental parameters of the problem. Following this theoretical portion of the article, we demonstrate the applicability of our MDP framework to real-world decision making by applying it to two case studies of electric utility infrastructure hardening. The first case study considers elevating a flood-prone substation and the second assesses upgrading transmission structures to withstand high winds. Results from these two case studies show that assumptions about the value of lost load during power outages and the distribution of customer types significantly influence the WTP for the resilience upgrades and are material to the decisions of whether or not to implement them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/risa.13838 | DOI Listing |
Foods
January 2025
Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
Africa is grappling with severe food security challenges driven by population growth, climate change, land degradation, water scarcity, and socio-economic factors such as poverty and inequality. Climate variability and extreme weather events, including droughts, floods, and heatwaves, are intensifying food insecurity by reducing agricultural productivity, water availability, and livelihoods. This study examines the projected threats to food security in Africa, focusing on changes in temperature, precipitation patterns, and the frequency of extreme weather events.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China.
The food and agriculture sector is a cornerstone of critical infrastructure (CI), underpinning global food security, public health, and economic stability. However, the increasing digitalization and connectivity of operational technologies (OTs) in this sector expose it to significant cybersecurity risks. Blockchain technology (BT) has emerged as a transformative solution for addressing these challenges by enhancing network security, traceability, and system resilience.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates.
The healthcare sector is experiencing a digital transformation propelled by the Internet of Medical Things (IOMT), real-time patient monitoring, robotic surgery, Electronic Health Records (EHR), medical imaging, and wearable technologies. This proliferation of digital tools generates vast quantities of healthcare data. Efficient and timely analysis of this data is critical for enhancing patient outcomes and optimizing care delivery.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
February 2025
School of Rail Transportation, Soochow University, Suzhou, People's Republic of China.
Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy.
The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!