Transcranial direct current stimulation (tDCS) is a non-invasive physical therapy to treat many psychiatric disorders and to enhance memory and cognition in healthy individuals. Our recent studies showed that tDCS with the proper dosage and duration can transiently enhance the permeability (P) of the blood-brain barrier (BBB) in rat brain to various sized solutes. Based on the permeability data, a transport model for the paracellular pathway of the BBB also predicted that tDCS can transiently disrupt the endothelial glycocalyx (EG) and the tight junction between endothelial cells. To confirm these predictions and to investigate the structural mechanisms by which tDCS modulates P of the BBB, we directly quantified the EG and tight junctions of BBB models after DCS treatment. Human cerebral microvascular endothelial cells (hCMECs) and mouse brain microvascular endothelial cells (bEnd3) were cultured on the Transwell filter with 3 μm pores to generate BBBs. After confluence, 0.1-1 mA/cm DCS was applied for 5 and 10 min. TEER and P to dextran-70k of the BBB were measured, HS (heparan sulfate) and hyaluronic acid (HA) of EG was immuno-stained and quantified, as well as the tight junction ZO-1. We found disrupted EG and ZO-1 when P to dextran-70k was increased and TEER was decreased by the DCS. To further investigate the cellular signaling mechanism of DCS on the BBB permeability, we pretreated the BBB with a nitric oxide synthase (NOS) inhibitor, L-NMMA. L-NMMA diminished the effect of DCS on the BBB permeability by protecting the EG and reinforcing tight junctions. These results conform to the observations and confirm the model prediction that DCS can disrupt the EG and tight junction of the BBB. Nevertheless, the effects of DCS are transient which backup its safety in the clinical application. In conclusion, our current study directly elucidates the structural and signaling mechanisms by which DCS modulates the BBB permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505730 | PMC |
http://dx.doi.org/10.3389/fcell.2021.731028 | DOI Listing |
Microorganisms
December 2024
Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
It is known that probiotics have direct and indirect effects on many systems in the body, especially the gastrointestinal system. Interest in using probiotic strain-derived cell components and metabolites has also increased as a result of the significant benefits of probiotics. Although many terminologies and definitions are used for these components and metabolites, the International Scientific Association of Probiotics and Prebiotics (ISAPP) recommended the use of the term postbiotic in 2021, which is defined as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host".
View Article and Find Full Text PDFCrit Rev Biotechnol
January 2025
Arterra Biosciences.P.A, Naples, Italy.
Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks.
View Article and Find Full Text PDFCancer Treat Rev
January 2025
Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK. Electronic address:
Claudins (CLDNs) play a crucial and indispensable role as fundamental components within the structure of tight junctions. Due to the distinct and unique distribution pattern exhibited by CLDNs in both normal and malignant tissues, these proteins have garnered significant attention as pivotal targets for systemic anti-cancer therapy and as noteworthy diagnostic markers. This review provides a comprehensive and detailed elucidation of the fundamental understanding surrounding CLDNs, their intricate expression patterns, the potential role they play in cancer diagnosis and therapeutic potentials; all encapsulated within a succinct summary of the cutting-edge advancements and the information derived from various clinical trials.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Background: Intestinal larva invasion is a crucial step of Trichinella spiralis infection. Intestinal infective larvae (IIL) and their excretory/secretory proteins (ESP) interact with gut epithelium, which often results in gut epithelium barrier injuries. Previous studies showed when T.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!