Host-plant-associated bacteria affect the growth, vigor, and nutrient availability of the host plant. However, phyllosphere bacteria have received less research attention and their functions remain elusive, especially in forest ecosystems. In this study, we collected newly developed needles from sapling (age 5 years), juvenile (15 years), mature (25 years), and overmature (35 years) stands of Chinese fir [ (Lamb.) Hook]. We analyzed changes in phyllosphere bacterial communities, their functional genes, and metabolic activity among different stand ages. The results showed that phyllosphere bacterial communities changed, both in relative abundance and in composition, with an increase in stand age. Community abundance predominantly changed in the orders Campylobacterales, Pseudonocardiales, Deinococcales, Gemmatimonadales, Betaproteobacteriales, Chthoniobacterales, and Propionibacteriales. Functional predictions indicated the genes of microbial communities for carbon metabolism, nitrogen metabolism, antibiotic biosynthesis, flavonoids biosynthesis, and steroid hormone biosynthesis varied; some bacteria were strongly correlated with some metabolites. A total of 112 differential metabolites, including lipids, benzenoids, and flavonoids, were identified. Trigonelline, proline, leucine, and phenylalanine concentrations increased with stand age. Flavonoids concentrations were higher in sapling stands than in other stands, but the transcript levels of genes associated with flavonoids biosynthesis in the newly developed needles of saplings were lower than those of other stands. The nutritional requirements and competition between individual trees at different growth stages shaped the phyllosphere bacterial community and host-bacteria interaction. Gene expression related to the secondary metabolism of shikimate, mevalonate, terpenoids, tocopherol, phenylpropanoids, phenols, alkaloids, carotenoids, betains, wax, and flavonoids pathways were clearly different in Chinese fir at different ages. This study provides an overview of phyllosphere bacteria, metabolism, and transcriptome in Chinese fir of different stand ages and highlights the value of an integrated approach to understand the molecular mechanisms associated with biosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505725 | PMC |
http://dx.doi.org/10.3389/fpls.2021.717643 | DOI Listing |
Microbiome
December 2024
School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
J Agric Food Chem
December 2024
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
Rice bacterial leaf blight, caused by pv (), is a significant threat to global food security. Although the microbiome plays an important role in protecting plant health, how the phyllosphere microbiome is recruited and the underlying disease resistance mechanism remain unclear. This study investigates how rice phyllosphere microbiomes respond to pathogen invasion through a comprehensive multiomics approach, exploring the mechanisms of microbial defense and host resistance.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi, China.
Introduction: Phytoremediation is a safe and green technology for the remediation of heavy metal pollution, a global environmental problem. Bryophytes are well known for their special physiological properties, but there is little research on the use of bryophytes for phytoremediation.
Methods: In this indoor experiment, the impacts of 40 days of Cd pollution (1 (T1), 5 (T2), 10 (T3) mg·L) on Cd absorption, growth and physiological characteristics, and phyllosphere bacterial diversity of were explored.
Food Microbiol
April 2025
University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada. Electronic address:
Pasta is a staple food in many parts of the world. A bright yellow colour of pasta is preferred by consumers. However, the colour is easily degraded during pasta processing.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA.
Microbes like bacteria and fungi are crucial for host plant growth and development. However, environmental factors and host genotypes can influence microbiome composition and diversity in plants such as industrial hemp (Cannabis sativa L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!