In this study, we examined transporter genes in metagenomic and metatranscriptomic data from a time-series survey in the temperate marine environment of the Baltic Sea. We analyzed the abundance and taxonomic distribution of transporters in the 3μm-0.2μm size fraction comprising prokaryotes and some picoeukaryotes. The presence of specific transporter traits was shown to be guiding the succession of these microorganisms. A limited number of taxa were associated with the dominant transporter proteins that were identified for the nine key substrate categories for microbial growth. Throughout the year, the microbial taxa at the level of order showed highly similar patterns in terms of transporter traits. The distribution of transporters stayed the same, irrespective of the abundance of each taxon. This would suggest that the distribution pattern of transporters depends on the bacterial groups being dominant at a given time of the year. Also, we find notable numbers of secretion proteins that may allow marine bacteria to infect and kill prey organisms thus releasing nutrients. Finally, we demonstrate that transporter proteins may provide clues to the relative importance of biogeochemical processes, and we suggest that virtual transporter functionalities may become important components in future population dynamics models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507841 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.714732 | DOI Listing |
J Contam Hydrol
January 2025
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China. Electronic address:
Polymer material (PM) is a novel vertical barrier material, demonstrated to be effective in impeding pollutants. However, the associated transport research is limited. This study aims to develop an analytical solution for two-dimensional transport of organic contaminant in the PM-enhanced composite cutoff wall (CCW) system, where the variable substitution and Fourier transform methods are used.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.
View Article and Find Full Text PDFPharmaceutics
January 2025
Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry, Northeast Forestry University, Harbin 150040, China.
The utilization of nitrogen (N) is crucial for the optimal growth and development of plants. As the dominant form of nitrogen in temperate soil, nitrate (NO) is absorbed from the soil and redistributed to other organs through NO transporters (NRTs). Therefore, exploration of the role of NRTs in response to various NO conditions is crucial for improving N utilization efficiency (NUE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!