A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced interleukin-6 myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516940PMC
http://dx.doi.org/10.1038/s42003-021-02691-0DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
muscle models
12
matrigel bioprinting
8
human skeletal
8
muscle
8
muscle wasting
8
bioprinting platform
8
human muscle
8
human
6
bioprinting contractile
4

Similar Publications

Background: The association between skeletal muscle and adipose tissue (body composition) and early response using positron emission tomography (PET) in pediatric Hodgkin lymphoma (HL) remains unstudied.

Methods: Patients enrolled on Children's Oncology Group studies AHOD0031 (intermediate-risk HL) and AHOD0831 (high-risk HL) with digital abdominal computed tomography (CT) scans at diagnosis and PET scans after 2 cycles (PET2) were included. Two consecutive slices at the third lumbar vertebra were identified and skeletal muscle index (SMI, in cm2/m2) and total adipose tissue index (TATI, in cm2/m2) were calculated using sliceOmatic (Magog, Canada) and height at diagnosis.

View Article and Find Full Text PDF

Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.

View Article and Find Full Text PDF

Although research on the relationship between lean body mass and blood pressure (BP) has been inconsistent, most studies reported that measures of lean body mass are associated with a higher risk of hypertension. We explored relationships between body composition (fat and skeletal muscle mass) and BP in 1162 young adult African women. DXA-derived measures of whole body, central and arm fat mass were associated with higher systolic and diastolic BP, while leg fat percentage was associated with lower systolic and diastolic BP.

View Article and Find Full Text PDF

Background And Objective: Sarcopenia, characterized by the progressive loss of skeletal muscle mass (MM) and muscle function, is a common and debilitating condition in cancer patients, significantly impacting their quality of life, treatment outcomes, and overall survival. The pathophysiology of sarcopenia is multifactorial, involving metabolic, hormonal, and inflammatory changes. Recent research highlights the role of chronic inflammation in the development and progression of sarcopenia, with pro-inflammatory cytokines being key mediators of muscle catabolism.

View Article and Find Full Text PDF

Objective: The staircase phenomenon, which refers to the increases in the force of contraction with repetitive stimulation of the muscle, has been studied for many years, but the method is difficult and not widely used. Our objective was to evaluate the staircase phenomenon in skeletal muscle using a piezoelectric sensor.

Methods: Thirty-five subjects without neuromuscular diseases (normal controls), 11 patients with Becker muscular dystrophy (BMD), and 19 patients with myotonic dystrophy type 1 (MyD) were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!