Gossypium arboreum is considered a rich source of stress-responsive genes and the EST database revealed that most of its genes are uncharacterized. The full-length Gossypium universal stress protein-2 (GUSP-2) gene (510 bp) was cloned in E. coli and Gossypium hirsutum, characterized and point mutated at three positions, 352-354, Lysine to proline (M1-usp-2) & 214-216, aspartic acid to serine (M2-usp-2) & 145-147, Lysine to Threonine (M3-usp-2) to study its role in abiotic stress tolerance. It was found that heterologous expression of one mutant (M1-usp-2) provided enhanced tolerance against salt and osmotic stresses, recombinant cells have higher growth up to 10-5dilution in spot assay as compared to cells expressing W-usp-2 (wild type GUSP-2), M2-usp-2 and M3-usp-2 genes. M1-usp-2 gene transcript profiling exhibited significant expression (8.7 fold) in CIM-496-Gossypium hirsutum transgenic plants and enhance drought tolerance. However, little tolerance against heat and cold stresses in bacterial cells was observed. The results from our study concluded that the activity of GUSP-2 was enhanced in M1-usp-2 but wipe out in M2-usp-2 and M3-usp-2 response remained almost parallel to W-usp-2. Further, it was predicted through in silico analysis that M1-usp-2, W-usp-2 and M3-usp-2 may be directly involved in stress tolerance or function as a signaling molecule to activate the stress adaptive mechanism. However, further investigation will be required to ascertain its role in the adaptive mechanism of stress tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516947 | PMC |
http://dx.doi.org/10.1038/s41598-021-99900-x | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye. Electronic address:
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil.
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.
View Article and Find Full Text PDFHunger remains a prevalent issue worldwide, and with a changing climate, it is expected to become an even greater problem that our food systems are not adapted to. There is therefore a need to investigate strategies to fortify our foods and food systems. Underutilized crops are farmed regionally, are often adapted to stresses, including droughts, and have great nutritional profiles, potentially being key for food security.
View Article and Find Full Text PDFHeliyon
January 2025
Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran.
Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow ( L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!