In this work froth flotation studies with LiAlO (lithium-containing phase) and Melilite solid solution (gangue phase) are presented. The system was optimized with standard collectors and with compounds so far not applied as collectors. Furthermore, the principle of self-assembled monolayers was introduced to a froth flotation process for the first time resulting in excellent yields and selectivities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516992PMC
http://dx.doi.org/10.1038/s41598-021-00008-zDOI Listing

Publication Analysis

Top Keywords

froth flotation
12
melilite solid
8
solid solution
8
improvement froth
4
flotation lialo
4
lialo melilite
4
solution pre-functionalization
4
pre-functionalization work
4
work froth
4
flotation studies
4

Similar Publications

This article presented the data of REEs (Rare Earth Elements) analysis from exploitation of Bangka tin tailing, Indonesia. Nowadays, REEs have broad applications in modern industry such as computer memory, DVDs, rechargeable batteries, cell phones, catalytic converters, fluorescent lighting, negative ion generators, and much more. A 30 min.

View Article and Find Full Text PDF

Research Progress of Application and Interaction Mechanism of Polymers in Mineral Flotation: A Review.

Polymers (Basel)

November 2024

SLon Magnetic Separator Ltd., Shahe Industrial Park, Ganzhou 341000, China.

Polymers are composed of many smaller units connected by covalent bonds, with higher molecular weight and larger molecular structure. Due to their economical efficiency and easy modification, researchers have discovered the potential of polymers as the flotation reagent in mineral processing, including the roles of depressant, flocculant, and frother. This paper provides a comprehensive review of the utilization of polymers in mineral flotation, emphasizing their current applications and mechanistic investigations.

View Article and Find Full Text PDF

A mini review of recent advances in environmentally friendly microplastic removal technologies in water systems.

J Contam Hydrol

December 2024

Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea. Electronic address:

The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy.

View Article and Find Full Text PDF

Coal gasification fine slag as a precursor to prepare mesoporous carbon materials by an activation-hydrothermal two-step method for CO adsorption.

J Environ Manage

December 2024

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China; Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai, 200237, China.

Coal gasification fine slag (CGFS) is a solid waste produced from gasification process, which consists of residual carbon with porous structure and minerals. The capture of CO by porous materials is an effective method for reducing CO emissions from industrial sources. In this work, the effective separation of residual carbon and ash from CGFS was achieved by froth flotation.

View Article and Find Full Text PDF

Sodium diethyldithiocarbamate (DDTC), a common collector used to enhance the hydrophobicity of minerals in froth flotation, nevertheless weakens the hydrophobicity of the talc surface. To rationalize this anomaly, the interactions of a hydrophobic alkyl group and hydrophilic mineralophilic group (-NCS) of heteropolar surfactant DDTC, and a water molecule with the talc (001) surface, were investigated. Herein, DFT simulations found that the talc (001) surface features natural hydrophobicity determined by the competition between adhesion (surface water) and cohesion (water-water interactions).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!