Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session66bclr9sk86kruk59b09asrnes09fv1p): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reconstructing Cenozoic history of continental silicate weathering is crucial for understanding Earth's carbon cycle and greenhouse history. The question of whether continental silicate weathering increased during the late Cenozoic, setting the stage for glacial cycles, has remained controversial for decades. Whereas numerous independent proxies of weathering in ocean sediments (e.g., Li, Sr, and Os isotopes) have been interpreted to indicate that the continental silicate weathering rate increased in the late Cenozoic, beryllium isotopes in seawater have stood out as an important exception. Beryllium isotopes have been interpreted to indicate stable continental weathering and/or denudation rates over the last 12 Myr. Here we present a Be cycle model whose results show that variations in the Be weathering flux are counterbalanced by near-coastal scavenging while the cosmogenic Be flux from the upper atmosphere stays constant. As a result, predicted seawater Be/Be ratios remain nearly constant even when global denudation and Be weathering rates increase by three orders of magnitude. Moreover, Be/Be records allow for up to an 11-fold increase in Be weathering and denudation rates over the late Cenozoic, consistent with estimates from other proxies. The large increase in continental weathering indicated by multiple proxies further suggests that the increased CO consumption by continental weathering, driven by mountain-building events, was counterbalanced by other geological processes to prevent a runaway icehouse condition during the late Cenozoic. These processes could include enhanced carbonate dissolution via pyrite weathering, accelerated oxidation of fossil organic carbon, and/or reduced basalt weathering as the climate cooled.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545494 | PMC |
http://dx.doi.org/10.1073/pnas.2026456118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!