Intratumoral heterogeneity is a leading cause of treatment failure resulting in tumor recurrence. For the antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1), two major types of resistance include changes in human epidermal growth factor receptor 2 (HER2) expression and reduced payload sensitivity, which is often exacerbated by heterogenous HER2 expression and ADC distribution during treatment. ADCs with bystander payloads, such as trastuzumab-monomethyl auristatin E (T-MMAE), can reach and kill adjacent cells with lower receptor expression that cannot be targeted directly with the ADC. Additionally, coadministration of T-DM1 with its unconjugated antibody, trastuzumab, can improve distribution and minimize heterogeneous delivery. However, the effectiveness of trastuzumab coadministration and ADC bystander killing in heterogenous tumors in reducing the selection of resistant cells is not well understood. Here, we use an agent-based model to predict outcomes with these different regimens. The simulations demonstrate that both T-DM1 and T-MMAE benefit from trastuzumab coadministration for tumors with high average receptor expression (up to 70% and 40% decrease in average tumor volume, respectively), with greater benefit for nonbystander payloads. However, the benefit decreases as receptor expression is reduced, reversing at low concentrations (up to 360% and 430% increase in average tumor volume for T-DM1 and T-MMAE, respectively) for this mechanism that impacts both ADC distribution and efficacy. For tumors with intrinsic payload resistance, coadministration uniformly exhibits better efficacy than ADC monotherapy (50%-70% and 19%-36% decrease in average tumor volume for T-DM1 and T-MMAE, respectively). Finally, we demonstrate that several regimens select for resistant cells at clinical tolerable doses, which highlights the need to pursue other mechanisms of action for durable treatment responses. SIGNIFICANCE STATEMENT: Experimental evidence demonstrates heterogeneity in the distribution of both the antibody-drug conjugate and the target receptor in the tumor microenvironment, which can promote the selection of resistant cells and lead to recurrence. This study quantifies the impact of increasing the antibody dose and utilizing bystander payloads in heterogeneous tumors. Alternative cell-killing mechanisms are needed to avoid enriching resistant cell populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969196 | PMC |
http://dx.doi.org/10.1124/dmd.121.000503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!