Rationale And Objectives: To compare the performance of pneumothorax deep learning detection models trained with radiologist versus natural language processing (NLP) labels on the NIH ChestX-ray14 dataset.
Materials And Methods: The ChestX-ray14 dataset consisted of 112,120 frontal chest radiographs with 5302 positive and 106, 818 negative labels for pneumothorax using NLP (dataset A). All 112,120 radiographs were also inspected by 4 radiologists leaving a visually confirmed set of 5,138 positive and 104,751 negative for pneumothorax (dataset B). Datasets A and B were used independently to train 3 convolutional neural network (CNN) architectures (ResNet-50, DenseNet-121 and EfficientNetB3). All models' area under the receiver operating characteristic curve (AUC) were evaluated with the official NIH test set and an external test set of 525 chest radiographs from our emergency department.
Results: There were significantly higher AUCs on the NIH internal test set for CNN models trained with radiologist vs NLP labels across all architectures. AUCs for the NLP/radiologist-label models were 0.838 (95%CI:0.830, 0.846)/0.881 (95%CI:0.873,0.887) for ResNet-50 (p = 0.034), 0.839 (95%CI:0.831,0.847)/0.880 (95%CI:0.873,0.887) for DenseNet-121, and 0.869 (95%CI: 0.863,0.876)/0.943 (95%CI: 0.939,0.946) for EfficientNetB3 (p ≤0.001). Evaluation with the external test set also showed higher AUCs (p <0.001) for the CNN models trained with radiologist versus NLP labels across all architectures. The AUCs for the NLP/radiologist-label models were 0.686 (95%CI:0.632,0.740)/0.806 (95%CI:0.758,0.854) for ResNet-50, 0.736 (95%CI:0.686, 0.787)/0.871 (95%CI:0.830,0.912) for DenseNet-121, and 0.822 (95%CI: 0.775,0.868)/0.915 (95%CI: 0.882,0.948) for EfficientNetB3.
Conclusion: We demonstrated improved performance and generalizability of pneumothorax detection deep learning models trained with radiologist labels compared to models trained with NLP labels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2021.09.013 | DOI Listing |
J Med Internet Res
January 2025
Knight Foundation of Computing & Information Sciences, Florida International University, Miami, FL, United States.
Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Public Health and Preventive Medicine, State University New York (SUNY) Upstate Medical University, Syracuse, New York.
Importance: Environmental service workers (ESWs) have a critical role within the hospital infrastructure and are at the frontline of infection prevention. ESWs are highly trained in managing all forms of regulated waste, which includes biohazardous waste, and are responsible for the overall patient experience, janitorial work, and infection prevention. Without environmental services, patients have a 6 times greater risk of being infected by pathogens from patients who previously occupied their room.
View Article and Find Full Text PDFAnesth Analg
February 2025
From the Department of Surgical Specialties and Anesthesiology of São Paulo State University (UNESP), Medical School, Botucatu, Brazil.
Background: Proficiency in endotracheal intubation (ETI) is essential for medical professionals and its training should start at medical schools; however, large caseload may be required before achieving an acceptable success rate with direct laryngoscopy. Video laryngoscopy has proven to be an easier alternative for intubation with a faster learning curve, but its availability in medical training may be an issue due to its high market prices. We devised a low-cost 3-dimensionally printed video laryngoscope (3DVL) and performed a randomized trial to evaluate if the intubation success rate on the first attempt with this device is noninferior to a standard commercially available video laryngoscope (STVL).
View Article and Find Full Text PDFInsights Imaging
January 2025
Medical Research Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, P. R. China.
Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).
Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses.
Int J Cardiovasc Imaging
January 2025
Artificial Intelligence Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!