A global screening identifies chromatin-enriched RNA-binding proteins and the transcriptional regulatory activity of QKI5 during monocytic differentiation.

Genome Biol

State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.

Published: October 2021

Background: Cellular RNA-binding proteins (RBPs) have multiple roles in post-transcriptional control, and some are shown to bind DNA. However, the global localization and the general chromatin-binding ability of RBPs are not well-characterized and remain undefined in hematopoietic cells.

Results: We first provide a full view of RBPs' distribution pattern in the nucleus and screen for chromatin-enriched RBPs (Che-RBPs) in different human cells. Subsequently, by generating ChIP-seq, CLIP-seq, and RNA-seq datasets and conducting combined analysis, the transcriptional regulatory potentials of certain hematopoietic Che-RBPs are predicted. From this analysis, quaking (QKI5) emerges as a potential transcriptional activator during monocytic differentiation. QKI5 is over-represented in gene promoter regions, independent of RNA or transcription factors. Furthermore, DNA-bound QKI5 activates the transcription of several critical monocytic differentiation-associated genes, including CXCL2, IL16, and PTPN6. Finally, we show that the differentiation-promoting activity of QKI5 is largely dependent on CXCL2, irrespective of its RNA-binding capacity.

Conclusions: Our study indicates that Che-RBPs are versatile factors that orchestrate gene expression in different cellular contexts, and identifies QKI5, a classic RBP regulating RNA processing, as a novel transcriptional activator during monocytic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518180PMC
http://dx.doi.org/10.1186/s13059-021-02508-7DOI Listing

Publication Analysis

Top Keywords

monocytic differentiation
12
rna-binding proteins
8
transcriptional regulatory
8
activity qki5
8
transcriptional activator
8
activator monocytic
8
qki5
6
global screening
4
screening identifies
4
identifies chromatin-enriched
4

Similar Publications

Major Depressive Disorder (MDD) is a widespread psychiatric condition impacting social and occupational functioning, making it a leading cause of disability. The diagnosis of MDD remains clinical, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria, as biomarkers have not yet been validated for diagnostic purposes or as predictors of treatment response. Traditional treatment strategies often follow a one-size-fits-all approach obtaining suboptimal outcomes for many patients who fail to experience response or recovery.

View Article and Find Full Text PDF

Host cell responses to biofilm-derived extracellular vesicles.

Front Cell Infect Microbiol

January 2025

Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.

is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.

View Article and Find Full Text PDF

Objective: The aim of this study was to examine the levels of hematologic parameters in acute ischemic stroke (AIS) and transient ischemic attack (TIA) and to evaluate the use of Neutrophil/Lymphocyte ratio (NLR), Systemic Immune-Inflammation Index (SII), and systemic inflammation response index (SIRI) in the differentiation of AIS and TIA.

Materials And Methods: Data and hematological results of patients admitted to the emergency department and diagnosed with AIS and TIA were compared retrospectively.

Results: The study included 36 TIA patients (M/F = 15/21) with a mean age of 64.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving systemic inflammation in T2DM; however, the underlying single-cell mechanisms remain inadequately defined.

Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was conducted.

View Article and Find Full Text PDF

Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis.

HGG Adv

January 2025

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Electronic address:

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!