Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease becoming one of the leading causes of mortality and morbidity globally. The significant risk factors for COPD are exposure to harmful particles such as cigarette smoke, biomass smoke, and air pollution. Pulmonary emphysema belongs to COPD and is characterized by a unique alveolar destruction pattern resulting in marked airspace enlargement. Alveolar type II (ATII) cells have stem cell potential; they proliferate and differentiate to alveolar type I cells to restore the epithelium after damage. Oxidative stress causes premature cell senescence that can contribute to emphysema development. MiRNAs regulate gene expression, are essential for maintaining ATII cell homeostasis, and their dysregulation contributes to this disease development. They also serve as biomarkers of lung diseases and potential therapeutics. In this review, we summarize recent findings on miRNAs' role in alveolar epithelial cells in emphysema.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275516 | PMC |
http://dx.doi.org/10.1016/j.biopha.2021.112216 | DOI Listing |
Mol Ther
January 2025
Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:
Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.
View Article and Find Full Text PDFInt J Hyg Environ Health
January 2025
Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.
Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China.
Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.
View Article and Find Full Text PDFAnn Card Anaesth
January 2025
All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary pathology characterized by the accumulation of surfactant within type II alveolar epithelial cells. Whole lung lavage is the standard treatment for pulmonary alveolar proteinosis involving a large volume of fluid is infused into one lung and subsequently retrieved while the other lung is remains ventilated. Fast-tracking a patient undergoing whole lung lavage requires vigilant monitoring of arterial blood gases, fluid status, and respiratory mechanics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!