We study the magnetoelectric and magnetothermal transport properties of noncentrosymmetric metals using semiclassical Boltzmann transport formalism by incorporating the effects of Berry curvature (BC) and orbital magnetic moment (OMM). These effects impart quadratic-dependence to the magnetoelectric and magnetothermal conductivities, leading to intriguing phenomena such as planar Hall effect, negative magnetoresistance (MR), planar Nernst effect and negative Seebeck effect. The transport coefficients associated with these effects show the usual oscillatory behavior with respect to the angle between the applied electric field and magnetic field. The bands of noncentrosymmetric metals are split by Rashba spin-orbit coupling except at a band touching point (BTP). For Fermi energy below (above) the BTP, giant (diminished) negative MR is observed. This difference in the nature of MR is related to the magnitudes of the velocities, BC and OMM on the respective Fermi surfaces, where the OMM plays the dominant role. The absolute MR and planar Hall conductivity show a decreasing (increasing) trend with Rashba coupling parameter for Fermi energy below (above) the BTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac2fd4 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
Two-dimensional (2D) organic-inorganic hybrid metal halides (OIMHs), characterized by noncentrosymmetric structures arising from the incorporation of chiral organic molecules that break inversion symmetry, have attracted significant attention. Particularly, chiral-polar 2D OIMHs offer a unique platform for multifunctional applications, as the coexistence of chirality and polarity enables the simultaneous manifestation of distinct properties such as nonlinear optical (NLO) effects, circular dichroism (CD), and ferroelectricity. In this study, we report the first synthesis of hafnium (Hf)-based chiral 2D OIMHs, achieved through the strategic incorporation of -substituents on the benzene ring of chiral organic components.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Oxide materials with a non-centrosymmetric structure exhibit bulk photovoltaic effect (BPVE) but with a low cell efficiency. Over the past few years, relatively larger BPVE coefficients have been reported for two-dimensional (2D) layers and stacks with asymmety-induced spontaneous polarization. Here, we report a crucial breakthrough in boosting the BPVE in 3R-MoS by adopting edge contact (EC) geometry using bismuth semimetal electrode.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, P. R. China.
Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Ferroelectricity in two-dimensional (2D) materials at room temperature has attracted significant interest due to their substantial potential for applications in non-volatile memory, nanoelectronics, and optoelectronics. The intrinsic tendency of 2D materials toward nonstoichiometry results in atomic configurations that differ from those of their stoichiometric counterparts, thereby giving rise to potential ferroelectric polarization properties. However, reports on the emergence of room temperature ferroelectric effects in nonstoichiometric 2D materials remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!