AI Article Synopsis

  • Cabotegravir (CAB), an effective anti-HIV drug, faces challenges in oral and injection administration, particularly in achieving adequate drug concentrations in vaginal tissues.
  • Researchers developed three types of vaginal gels—thermosensitive, mucoadhesive, and a combination—using ingredients like Pluronics and HPMC to improve drug delivery via the vaginal route.
  • The optimal gel formulation showed favorable properties for vaginal use, including good drug retention and no harmful effects on vaginal tissues, making it a promising alternative for CAB administration.

Article Abstract

As an effective anti-HIV drug, cabotegravir (CAB) is currently administered via oral and injection routes, leading to several drawbacks, such as poor oral bioavailability and problems in the injection application process, as well as low drug concentration in vaginal tissue of woman patients. To overcome these issues, for the first time, we formulated CAB into three types of vaginal gels, considering the benefits of vaginal tissue as a delivery route. Thermosensitive gel, mucoadhesive gel, and the combination of these gels were developed as suitable carriers for CAB. Pluronics®, hydroxy propyl methyl cellulose (HPMC), Carbomer and poly(ethylene glycol) (PEG) 400 were used as thermosensitive, mucoadhesive and permeation enhancer agents, respectively. The gels were evaluated for their thermosensitive and mucoadhesive properties, as well as their pH values, viscosities, gel erosions, drug content recovery, in vitro drug release, ex vivo permeation, ex vivo retention, hemolytic activities, Lactobacillus inhibition activities and in vivo irritation properties. The results showed that all formulations showed desired characteristics for vaginal administration. Importantly, all formulations did not show hemolytic activities and inhibitions to Lactobacillus as normal bacteria in the vagina. Furthermore, no irritation in the vaginal tissues of the rats was observed by histopathological studies. Considering the thermosensitive and mucoadhesive properties, the combination of Pluronic® F127, Pluronic F68, and HPMC in thermosensitive-mucoadhesive vaginal gels was selected as the optimum dosage form for CAB as this formulation was able to provide ease administration due to its liquid form at room temperature. The use of PEG in this formulation was able to increase the penetrability of CAB through vaginal tissue with 0.61 ± 0.05 mg and 17.28 ± 0.95 mg of CAB being able to penetrate and localize in the vagina, respectively. Essentially, the optimum formulation was retained in the vaginal mucosa for>8 h. To conclude, further extensive in vivo studies should now be conducted to evaluate the efficacy of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.121182DOI Listing

Publication Analysis

Top Keywords

thermosensitive mucoadhesive
16
vaginal tissue
16
vaginal
9
vaginal gels
8
mucoadhesive properties
8
hemolytic activities
8
cab
6
mucoadhesive
5
gels
5
development thermosensitive
4

Similar Publications

The aim of this study was to develop a thermosensitive mucoadhesive (MA) in situ nasal gel for sumatriptan. A 3D response surface methodology (Design of Expert version 11) was employed to formulate nine different formulations. The Pluronic F-127 concentration (X1) and chitosan concentration (X2) were selected as independent factors.

View Article and Find Full Text PDF

Alzheimer's disease (AD), which is marked by gradual neuronal decline and subsequent loss of cognitive functions and memory, poses significant treatment challenges. The present study involved the development, , and evaluation of a novel intranasal mucoadhesive in-situ gel of vinpocetine (VIN) with the aim to target the brain. An innovative gel formulation composed of poloxamer 407, HPMC E15 LV, and citric acid as a solubilizer was developed by 2 Factorial Design.

View Article and Find Full Text PDF

Xyloglucan is a highly promising 'green' polymer that has found its application in the food and pharmaceutical industries. Due to its molecular structure similarity to mucin, it has remarkable mucoadhesion properties, which has led to a high research interest in this excipient for the development of transmucosal delivery systems. Thermosensitivity is another promising property of xyloglucan derivatives, which is mainly exhibited by synthetic block copolymers such as pluronics and PLGA derivatives.

View Article and Find Full Text PDF
Article Synopsis
  • Limited solubility of miconazole nitrate (MN) is a key factor in its low effectiveness against candidiasis, prompting a study to create a microemulsion (ME) and temperature-triggered in situ gel for enhanced delivery.
  • Researchers conducted various tests, including solubility studies and the construction of pseudo-ternary phase diagrams to optimize the formulation, ultimately selecting tea tree oil, lavender oil, tween 80, and propylene glycol for the ME.
  • The resulting gel formulation (MG1) showed optimal characteristics like gelation temperature, viscosity, and a significant increase in antifungal activity compared to existing MN products, alongside no irritation in animal tests.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!