A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Waste Ox bone based heterogeneous catalyst synthesis, characterization, utilization and reaction kinetics of biodiesel generation from Jatropha curcas oil. | LitMetric

The present investigation has been carried out to utilize waste animal (Ox) bone for the progress of an innovative, low-budget, pollution free, and extremely resourceful heterogeneous catalyst synthesis for Jatropha curcas oil (JCO) conversion into biodiesel. The heterogeneous catalyst synthesized was characterized by its basic strength and subjected to spectroscopic (Fourier TransformInfrared and X-Ray Diffraction) and thermogravimetric analyses. Also, the physical properties of produced biodiesel were studied. The calcined Ox bone catalyst characterization distinctly showed that there was a tremendous catalytic activity for biodiesel synthesis. The kinetic study was accomplished employing a tri-necked RB flask furnished with a condenser and agitator. At the agitation speed of 500 rpm, 5% catalyst loading rate (w/w) of oil and 12:1 methanol-oil ratio (molar), biodiesel yields were tracked based on reaction time (1-4 h) and temperature (313-338 K). The temperature at 338 K was found to be optimal to obtain maximum (96.82%) biodiesel yield. Pseudo-first order kinetics was followed in the reaction. The energy required for the activation (E) was 38.55 kJ mol with a frequency factor (k) of 7.03 × 10 h. The reusability studies demonstrated that the calcined animal bone catalyst was much stable up to three cycles with >90% FAME yield, which was reduced significantly (P < 0.05) to 61% in the fourth cycle. The outcome of this investigation brought to light the possibilities of utilizing calcined Ox bone catalyst and JCO as low-cost and frequently obtainable discarded waste materials that can be used as feedstock for the commercial-scale generation of biodiesel to fulfill the prospective community demands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132534DOI Listing

Publication Analysis

Top Keywords

heterogeneous catalyst
12
catalyst synthesis
8
jatropha curcas
8
curcas oil
8
animal bone
8
bone catalyst
8
catalyst
6
biodiesel
6
waste bone
4
bone based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!