Boron contamination in water resources (especially drinking waters and agricultural land) is a major problem for the ecosystem. In this study, a novel synthesized chitosan/functionalized-SWCNT-COOH was prepared to separate boron (as boric acid) from aqueous solutions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis revealed that SWCNT was dispersed in chitosan homogenously. Moreover, this study has related to the constrained optimization problem with an engineering approach. Response surface method (RSM) with face-centered central composite design (FCCCD) was chosen for maximizing the adsorption capacity as well as determining optimal independent factors such as pH, adsorbent dose, and concentration of boric acid. The optimized response (adsorption capacity) was reached 62.16 mg g under the optimal conditions (98.77 mg L of boric acid concentration, pH of 5.46 and 76 min). The present study has indicated that the synthesized material can be used as an adsorbent for eliminating boric acid from aqueous solutions depending on its high adsorbent capacity to remove boron and has better performance than existing adsorbents. Furthermore, simulated annealing (SA) optimization technique was used to compare the findings of RSM. Moreover, the selected optimization techniques were compared with error functions. The optimal conditions derived from SA were 91.17 mg L of boric acid concentration, pH of 5.86, and 76.17 min. The optimal adsorption capacity of SA was found to be 62.06 mg g. These results revealed that the predictions of the two models are very close to each other.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132554DOI Listing

Publication Analysis

Top Keywords

boric acid
20
aqueous solutions
12
adsorption capacity
12
response surface
8
simulated annealing
8
acid aqueous
8
optimal conditions
8
acid concentration
8
boric
5
acid
5

Similar Publications

A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:

Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.

View Article and Find Full Text PDF

Currently, the rising prevalence of resistant species, particularly , as well as non-albicans isolates such as and , represent challenges in their management. In this review, we aimed to explore the current management of fluconazole-resistant vulvovaginal candidiasis (FRVVC). Identified studies focused on alternative antifungal therapies, including boric acid, nystatin, and newer agents like oteseconazole and ibrexafungerp.

View Article and Find Full Text PDF

: Cyclophosphamide (CP) is widely used for treating various cancers and autoimmune diseases, but it causes damage to reproductive organs due to oxidative stress (OS) and inflammation. Boric acid (BA) has antioxidant properties that may help reduce OS, which is critical for preserving uterine functionality, particularly for cancer patients considering pregnancy after cryopreservation. This study aimed to determine whether BA could diminish CP-induced toxicity in the uterus and fallopian tubes (FT) using CP-induced toxicity in a rat model.

View Article and Find Full Text PDF

Metabolic syndrome during menopause can lead to diabetes, cardiovascular problems, and increased mortality rates. Hormone replacement therapy is recommended to manage climacteric complications, but it has serious adverse effects. This study, therefore, investigated the potential of supplementing some minerals, vitamins, and natural products like boric acid, magnesium, vitamin D3, and extra virgin olive oil on metabolic status of menopausal ovariectomized rats.

View Article and Find Full Text PDF

Saprolegniasis is one of the most dangerous fungal diseases of fish, causing significant mortality in fish hatcheries and young ones. The present study aimed to isolate and characterize the causative fungus from fingerlings of Pangasianodon hypophthalmus cultured intensively in freshwater cages in Indian reservoirs and to determine minimum inhibitory concentrations of different antifungal compounds against the fungal hyphae and zoospores. The fungal isolates grown on potato dextrose agar showed an abundance of gemmae, elongated mycelia, non-septate hyphae, primary zoospores, mature zoosporangia with numerous zoospores, cysts with bundles of long hairs and were further identified as Saprolegnia parasitica following PCR amplification and sequencing of internal transcribed spacer region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!