Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
AbstractDisassortative mating is a rare form of mate preference that promotes the persistence of polymorphism. While the evolution of assortative mating and its consequences for trait variation and speciation have been extensively studied, the conditions enabling the evolution of disassortative mating are still poorly understood. Mate preferences increase the risk of missing mating opportunities, a cost that can be compensated by a greater fitness of offspring. Heterozygote advantage should therefore promote the evolution of disassortative mating, which maximizes the number of heterozygous offspring. From the analysis of a two-locus diploid model with one locus controlling the mating cue under viability selection and the other locus coding for the level of disassortative preference, we show that heterozygote advantage and negative frequency-dependent viability selection acting at the cue locus promote the evolution of disassortative preferences. We predict conditions of evolution of disassortative mating coherent with selection regimes acting on traits observed in the wild. We also show that disassortative mating generates sexual selection, which disadvantages heterozygotes at the cue locus, limiting the evolution of disassortative preferences. Altogether, our results partially explain why this behavior is rare in natural populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/716509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!