This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608973 | PMC |
http://dx.doi.org/10.1007/s13311-021-01137-z | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFPlant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFViruses
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou 311100, China.
, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!