Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BCJ20210368 | DOI Listing |
Germs
September 2024
MD, PhD, Infectious Diseases Department, University Hospital of Split, HR-21000 Split, Croatia, and University of Split School of Medicine, HR-21000 Split, Croatia, and University Department of Health Studies of the University of Split, HR-21000 Split, Croatia.
Introduction: Alveolar echinococcosis is one of the most pathogenic zoonoses caused by the larval forms of . It is endemic in central Europe, but from 2001 to 2018, eight European countries reported their first cases of alveolar echinococcosis. These numbers testify to unprecedented spread of the infection.
View Article and Find Full Text PDFMol Clin Oncol
February 2025
Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China.
The aim of the present study was to investigate the efficacy and safety of anlotinib combined with vinorelbine (NVB) as a second-line treatment for elderly patients with advanced squamous cell lung carcinoma (SqCLC). The present retrospective analysis included 48 elderly patients (aged ≥65 years) diagnosed with advanced SqCLC who received anlotinib in combination with NVB as a second-line therapy between January 2021 and December 2023. The primary endpoints assessed were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR) and safety profile.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.
Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).
Front Immunol
December 2024
Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Afliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
Background: Inflammation and immune evasion are associated with tumorigenesis and progression. The Systemic Inflammation Response Index (SIRI) has been proposed as a pre-treatment peripheral blood biomarker. This study aims to compare the relationship between SIRI, various serum biomarkers, and the prognosis of NSCLC patients before and after treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!